{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Threat Models for Differential Privacy

A look at central, local, and hybrid models

Joseph Near
David Darais
Mon, 04/12/2021 - 12:03
  • Comment
  • RSS

Social Sharing block

  • Print
All articles in this series
Differential Privacy for Privacy-Preserving Data Analysis
Threat Models for Differential Privacy
Counting Queries: Extracting Key Business Metrics From Datasets
Summation and Average Queries: Detecting Trends in Your Data
Workloads of Counting Queries: Enabling Rich Statistical Analyses With Differential Privacy
Differential Privacy Bugs and Why They’re Hard to Find
Body

It’s not so simple to deploy a practical system that satisfies differential privacy. Our example in the last post was a simple Python program that adds Laplace noise to a function computed over the sensitive data. For this to work in practice, we’d need to collect all the sensitive data on one server to run our program.

ADVERTISEMENT

What if that server gets hacked? Differential privacy provides no protection in this case—it only protects the output of our program.

When deploying differentially private systems, it’s important to consider the threat model—that is, what kind of adversaries we want the system to protect against. If the threat model includes adversaries who might compromise the server holding the sensitive data, then we need to modify the system to protect against this kind of attack.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us