{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

        
User account menu
Main navigation
  • Topics
    • Customer Care
    • Regulated Industries
    • Research & Tech
    • Quality Improvement Tools
    • People Management
    • Metrology
    • Manufacturing
    • Roadshow
    • QMS & Standards
    • Statistical Methods
    • Resource Management
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • Customer Care
    • Regulated Industries
    • Research & Tech
    • Quality Improvement Tools
    • People Management
    • Metrology
    • Manufacturing
    • Roadshow
    • QMS & Standards
    • Statistical Methods
    • Supply Chain
    • Resource Management
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Training

A Technique to Improve Both Fairness and Accuracy in Artificial Intelligence

A new approach

Photo by Andrea De Santis on Unsplash
Adam Zewe
Bio
Tue, 08/09/2022 - 12:00
  • Comment
  • RSS

Social Sharing block

  • Print
Body

(MIT: Cambridge, Massachusetts)--For workers who use machine-learning models to help them make decisions, knowing when to trust a model’s predictions is not always an easy task, especially since these models are often so complex that their inner workings remain a mystery.

ADVERTISEMENT

Users sometimes employ a technique, known as selective regression, in which the model estimates its confidence level for each prediction and will reject predictions when its confidence is too low. Then a human can examine those cases, gather additional information, and make a decision about each one manually.

But while selective regression has been shown to improve the overall performance of a model, researchers at MIT and the MIT-IBM Watson AI Lab have discovered that the technique can have the opposite effect for underrepresented groups of people in a dataset. As the model’s confidence increases with selective regression, its chance of making the right prediction also increases, but this does not always happen for all subgroups.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password
You Might Like...
What’s a 150-Year-Old Meat Chopper Have to Do With America’s Favorite Sports Car?
Next-Generation TFX Thermoformer Sets Benchmark in Speed and Flexibility
Direct-Drive Vertical Translation Stage With Magnetic Counterbalance
How to Pitch Big Ideas to Senior Stakeholders
Rhopoint PANTORA Aesthetix Streamlines Creation of Digital Material Twins

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.

© 2026 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us