{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

When Can We Trust the Limits On a Process Behavior Chart?

Don’t the outliers distort the limits?

Donald J. Wheeler
Tue, 05/26/2009 - 13:55
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Last month we showed the X chart in figure 1. The four lowest values and the three highest values were seen to be “outliers” when we looked at the histogram. When we fitted a bell-shaped curve to the histogram, the outliers corrupted the model and resulted in a poor fit. Yet we used all the data to compute the limits seen in figure 1. How can the outliers corrupt one computation but not another?

ADVERTISEMENT

The answer lies in how we compute limits for the X chart. The central line is commonly taken to be the average value. Now, while it’s true that the average may be influenced by extreme values, this effect is generally smaller than you might expect. In this case, deleting the seven outliers would only change the average from 595.4 to 595.6. The average value is a very robust measure of location. However, in cases where we think the average may have been unduly influenced by extreme values, we may always resort to using the median value instead. In this case the median is 596. Thus, one way or another, we’re going to have a reasonable estimate of location regardless of the outliers.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us