{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Everyday Time and Atomic Time, Part 2

A short history of frequency

Judah Levine
Thu, 05/20/2021 - 12:02
  • Comment
  • RSS

Social Sharing block

  • Print
All articles in this series
Everyday Time and Atomic Time, Part 1
Everyday Time and Atomic Time, Part 2
Body

Frequency was originally considered to be the province of musicians. The pitches or frequencies of the notes in a musical scale are defined by ratios—octaves, for example, where the frequency of the higher note is twice the frequency of the lower one.

ADVERTISEMENT

The 12 notes between octaves in Western music are also defined by ratios—in principle the ratios of small integers, because notes that have this relationship are generally regarded as pleasing when sounded together, and because these relationships arise naturally in the resonant frequencies of vibrating strings and pipes.

In the “equally tempered” musical scale, the most common tuning system in Western music, the ratio of the frequencies between consecutive notes is 21/12 or about 1.0594. An advantage of this scale is that an octave can consist of any 12 consecutive notes, but a disadvantage is that the ratio of the frequencies of notes are not exactly small integers. Pianos are often tuned to this scale, so that a piano can be played equally well (or equally poorly, depending on your perspective) in any key, that is, with an octave that begins on any note.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us