{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Precision Testing for MEMS Accelerometers

Standardized protocols for life’s ubiquitous sensors

NIST
Wed, 04/20/2016 - 17:07
  • Comment
  • RSS

Social Sharing block

  • Print
Body

They activate airbags. Keep aircraft correctly positioned in flight. Detect earthquakes or sudden vibrations in failing machinery. Guide military hardware. Monitor falls in elderly individuals and initiate calls for help. They rotate the display on a smartphone from vertical to horizontal, and measure our exercise intensity and activity level in gadgets we carry or wear.

ADVERTISEMENT

These and hundreds of similar tasks are performed around the world every day by accelerometers—sensors that respond to change in motion. They are fast becoming ubiquitous, and their components have shrunk to the micrometer scale. Increasingly, they measure acceleration along three orthogonal axes.

However, despite the growing importance of three-axis accelerometers, there are no standardized testing protocols for evaluating the performance of these microelectromechanical systems (MEMS).


Figure 1: The goniometer-based instrument. The pivot arm is shown with a three-axes accelerometer mounted. Credit: NIST/PML.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us