{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

NIST Sensor Improvement Brings Analysis Method into Mainstream

Neutron interferometry can now be a tool for industry

NIST
Wed, 01/04/2012 - 12:32
  • Comment
  • RSS

Social Sharing block

  • Print
Body

An advance in sensor design by researchers at the National Institute of Standards and Technology (NIST) and the University of Waterloo’s Institute of Quantum Computing (IQC) could unshackle a powerful, yet high-maintenance technique for exploring materials. The achievement could expand the technique—called neutron interferometry—from a test of quantum mechanics to a tool for industry as well.

ADVERTISEMENT

Neutron beams can be used in dozens of ways to probe complex molecules and other advanced materials, but few of the analysis techniques require as much care as neutron interferometry. The technique treats neutrons as waves—a feature of quantum mechanics—and measures how the neutron is altered as it passes through a sample material. The results can reveal a variety of details about the magnetic, nuclear and structural properties of the sample. Neutron interferometry is extremely sensitive, but it carries a price: The instruments are so exquisitely sensitive to vibration and temperature that they must be built in a blockhouse the size of a garage, where they can be shielded from seismic activity and maintained at temperatures that are stable to within a few thousandths of a degree Celsius.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us