{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

NIST Expert Software “Lowers the Stress” on Materials Problems

Object-Oriented Finite element analysis helps designers understand how stress acts on complex materials

NIST
Mon, 03/07/2011 - 10:04
  • Comment
  • RSS

Social Sharing block

  • Print
Body

(NIST: Gaithersburg, MD) -- Before you can build that improved turbojet engine, before you can create that longer lasting battery, you have to ensure all the newfangled materials in it will behave the way you want—even under conditions as harsh as the upper atmosphere at supersonic speed, or the churning chemistry of an ion cell. Now computer scientists at the National Institute of Standards and Technology (NIST) have improved software that can take much of the guesswork out of tough materials problems like these.

ADVERTISEMENT

The software package, Object-Oriented Finite element analysis (OOF) is a specialized tool to help materials designers understand how stress and other factors act on a material with a complex internal structure, as is the case with many alloys and ceramics. As its starting point, OOF uses micrographs—images of a material taken by a microscope. At the simplest level, OOF is designed to answer questions like, “I know what this material looks like and what it’s made of, but I wonder what would happen if I pull on it in different ways?” or “I have a picture of this stuff and I know that different parts expand more than others as temperature increases—I wonder where the stresses are greatest?”

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us