Cost for QD employees to rent an apartment in Chico, CA. $1,200/month. Please turn off your ad blocker in Quality Digest
Our landlords thank you.
Michael P. Powell
Published: Tuesday, April 6, 2021 - 12:02 The promise of advanced manufacturing technologies—also known as smart factories or Industry 4.0—is that by networking our machines, computers, sensors, and systems, we will (among other things) enable automation, improve safety, and ultimately become more productive and efficient. And there is no doubt that manufacturing has already benefited from that transformation. However, connecting all of these sensors and devices to our industrial control systems, along with the increase in remote work and monitoring, results in manufacturing networks with greater vulnerabilities to cyberattack. This is an increasingly challenging dynamic as manufacturers sort out how to adopt commercial information technology (IT) standards that are compatible with their operational technology (OT) standards. NIST’s National Cybersecurity Center of Excellence (NCCoE), in conjunction with NIST’s Engineering Laboratory, recently released a report that demonstrated a set of behavioral anomaly detection (BAD) capabilities to support cybersecurity in manufacturing organizations. Using these capabilities enables manufacturers to detect anomalous conditions in their operating environments to mitigate malware attacks and other threats to the integrity of critical operational data. In other words, manufacturers will be able to continuously monitor systems in real time or near real time for evidence of compromise. The development of standards-based cyber controls is an important aspect of security requirements of manufacturers. BAD involves the continuous monitoring of systems for unusual events or trends. The monitor looks in real time for evidence of compromise, rather than for the cyberattack itself. Early detection of potential cybersecurity incidents is key to helping reduce the effect of these incidents for manufacturers. Cyber breaches are typically detected after the attack. BAD tools are implemented in industrial control systems and OT environments, and could be monitored by a human control interface, which many manufacturers use to monitor their operations. The operator would be able to see network traffic and be alerted to the addition of any authorized or unauthorized device or connection. For example, the system would know what communications are authorized with a programmable logic controller (PLC), so any new contact would generate an alert. Likewise, any abnormal talking between connected machines, modifications in human-machine interface logic, or other anomalies would be noted. The BAD solution is a relatively inexpensive, modular approach and an efficient way to detect anomalies. However, BAD alerts are passive in nature and would not necessarily take remedial actions such as shutting down the production process. According to the U.S. Department of Homeland Security, manufacturing was the most targeted industry for infrastructure attacks in 2015, and small and medium-sized manufacturers (SMMs) continue to be prime cyber targets. There is greater demand for cybersecurity because of manufacturers’ growing dependence on technology and data as drivers of productivity and efficiency. SMMs traditionally have found managing cybersecurity concerns a challenge for a variety of reasons: The work to develop the BAD capability used 16 test cases, or classifications. Some were simple alerts to an event, such as password and authentication failures; others involved some level of analytics, such as notification of unauthorized software installations and an alert of denial of service. The next joint project from NIST’s NCCoE and Engineering Laboratory, Protecting Information and System Integrity in Industrial Control System Environments, takes a more comprehensive approach to protection from data integrity hacks. These capabilities include: Nine manufacturing vendors and integrators have signed cooperative research and development agreements (CRADA) with the NCCoE to help develop the capabilities. Cybersecurity experts working in the manufacturing sector see education as a key to SMMs adopting these cybersecurity solutions. More SMMs are looking at cyber consultations in much the same way they might seek expertise for finance or insurance. If you aren’t sure where to start with cybersecurity for your manufacturing firm, check out this assessment tool For particular needs, the most expedient route to find proper guidance is to connect with a cybersecurity expert at your local MEP center. First published March 5, 2021, on NIST’s Manufacturing Innovation Blog. Quality Digest does not charge readers for its content. We believe that industry news is important for you to do your job, and Quality Digest supports businesses of all types. However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads. So please consider turning off your ad blocker for our site. Thanks, Michael Powell is a cybersecurity engineer at the National Cybersecurity Center of Excellence (NCCoE) at the National Institute of Standards and Technology (NIST). His research focuses on cybersecurity for the manufacturing sector, particularly how it impacts industrial control systems.Detecting Abnormal Cyber Behavior Before a Cyberattack
The development of standards-based cyber controls is an important aspect of security requirements for manufacturers
New standards-based capabilities will help manufacturers
How BAD monitoring translates to early detection of cyber threats
Manufacturers remain a target for cyberattacks
• The manufacturing technology mix includes IT (e.g., networks and business-side software such as email, finance, and enterprise resource planning) and OT (operational technology, such as machines and control systems).
• Cyber competes with many other areas in terms of funding, awareness, and education.
• It’s difficult to dedicate specialty resources for in-house staffing.
• Cybersecurity has not been a priority in the OT build, which means as IT and OT are connected, the vulnerabilities of legacy systems become potential liabilities to the whole network.What’s next from NIST Labs and NCCoE for cybersecurity
• Security incident and event monitoring
• Application-allow lists
• Malware detection and mitigation
• Change control management
• User authentication and authorization
• Access control of least privilege
• File-integrity checking mechanismsContact your local MEP center for expert cybersecurity advice
and NIST’s Cybersecurity Framework. You also can browse the NIST MEP collection of cybersecurity resources for manufacturers.
Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.
Quality Digest Discuss
About The Author
Michael P. Powell
© 2022 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute, Inc.