{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Render Unto Enumerative Studies…

Data from a time series can’t be ‘mixed rigorously’ and then analyzed

Rip Stauffer
Wed, 07/31/2013 - 12:22
  • Comment
  • RSS

Social Sharing block

  • Print
  • Add new comment
Body

In one recent online forum, a Six Sigma Black Belt asked a question about validating samples—how to ensure that when they are taken, they would reflect (i.e., represent) the population parameter. His purpose: to understand the baseline for a project. He said he had six months of data regarding cycle times for handling maintenance tickets.

ADVERTISEMENT

Among the early suggestions to the query were an assortment of options, including cross validation using regression (comparing randomly selected subsets) and t-tests on small samples. Another person suggested testing the data for normality: “Then any sampling technique will do,” he claimed.

Someone suggested plotting the data on an XmR or XbarR chart. Someone else suggested simply taking the average and then using process maps and lean techniques to reduce the cycle time. This person asserted that, “Random sampling is all that is needed to have a representative sample—by definition.” He went on to suggest that stability doesn’t matter; with six months of data, you can just number the tickets from 1 to k, and use a random number generator to select a sample. His justification? Classical statistical texts don’t require you to check for stability before taking a random sample.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Comments

Submitted by Dave Y on Tue, 08/06/2013 - 10:10

I like that one

Average phone number?  Rip - good one!

But seriously I sometimes wonder - assuming competent managers and employees, shouldn't we be able to figure out most things just by looking at the time series?  A group responsible for maintenance ticket turnover time or nurse response time should be able to understnad when they are doing well and when not and also why by virtue of the fact that they work there.  Insiders should know.  Outsiders need fancy analysis.

  • Reply

Submitted by Rip Stauffer on Tue, 08/06/2013 - 11:27

In reply to I like that one by Dave Y

Maybe...

If they are using a time series, then they are ahead of the game. With a stable process, though, I still want the process behavior chart, so I can tell when assignable causes happen. It's not fancy analysis, just an XmR chart. 

  • Reply

Submitted by umberto mario tunesi on Wed, 08/07/2013 - 00:37

Go down Sampling

Based on my work experience, I'm more familiar with Pierre Gy's sampling theories, though criticized they can be. In any case, I do much appreciate a professional raising this issue: effective sampling is far from being AQL tables and ISO 2859 only. Thank you.

  • Reply

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us