{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

A Make-Believe World of Random Failure Rates

The effect of assuming exponential distribution for ‘ease of analysis’

Fred Schenkelberg
Tue, 05/03/2016 - 13:25
  • Comment
  • RSS

Social Sharing block

  • Print
  • Add new comment
Body

What if all failures occurred truly randomly? Well, for one thing the math would be easier.

ADVERTISEMENT

The exponential distribution would be the only time to failure distribution—we wouldn’t need Weibull or other complex multi-parameter models. Knowing the failure rate for an hour would be all we would need to know, over any time frame.

Sample size and test planning would be simpler. Just run the samples at hand long enough to accumulate enough hours to provide a reasonable estimate for the failure rate.

Would the design process change?

Yes, I suppose it would. The effects of early life and wear-out would not exist. Once a product is placed into service, the chance to fail the first hour would be the same as in any hour of its operation. It would fail eventually, and the chance of failing before a year would solely depend on the chance of failure per hour.

A higher failure rate would suggest it would have a lower chance of surviving very long. 

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Comments

Submitted by kkbari on Tue, 05/03/2016 - 11:37

Keeping this one!

An excellent article.  I'm keeping this - not necessarily about reliability but for all things that we make "easy" assumptions.  Thanks!

  • Reply

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us