Featured Product
This Week in Quality Digest Live
Metrology Features
Marlon Walker
Collaborative robots are already working in close proximity with humans on the shop floor
MIT News
System uses RFID tags to home in on targets; could benefit robotic manufacturing, collaborative drones
Tamper-proof data transmission, traceability of data to all participants in the production process
David L. Chandler
New system of ‘strain engineering’ can change a material’s optical, electrical, and thermal properties

More Features

Metrology News
Diamond styli are an excellent choice for demanding applications
Two key configurations: UH4250 Hardness Scale 0.5-250 kgf and UH4750 Hardness Scale 3-750 kgf
Detects challenging targets with a range up to 2 meters
Control machine performance by detecting manufacturing faults as well as part or tool variations
Low power consumption, solid performance for wide range of applications
New S1 systems offer high volume production testing of compression and extension springs
S-T optical equipment owners encouraged to register their equipment with Dorsey Metrology
They’re spring-loaded AC LVDTs ideal for roundness measurements, automotive testing and materials testing
Works with Marposs LVDT/HVT manual gauges

More News

Jennifer Lauren Lee


How Bright Is the Moon, Really?

Nobody knows exactly how bright the Moon is... but that could change soon

Published: Thursday, February 1, 2018 - 13:01

The “inconstant moon,” as Shakespeare called it in Romeo and Juliet, is more reliable than his pair of star-crossed lovers might have thought. Now researchers at the National Institute of Standards and Technology (NIST) plan to make the Moon even more reliable with a new project to measure its brightness.

Moonset on the NIST campus
Moonset on the NIST campus. These white domes will house the equipment used in the Moon brightness experiment. Eventually the domes and equipment will be moved to the Mauna Loa Observatory in Hawaii. Credit: Jennifer Lauren Lee/NIST

Scientists put the Moon to work daily as a calibration source for space-based cameras that use the brightness and colors of sunlight reflecting off our planet to track weather patterns, trends in crop health, the locations of harmful algal blooms in oceans, and much more. The information sent from Earth-facing imagers allows researchers to predict famines and floods, and can help communities plan emergency response and disaster relief.

To make sure that one satellite camera’s “green” isn’t another’s “yellow,” each camera is calibrated—in space—against a common source. The Moon makes a convenient target because, unlike Earth, it has no atmosphere, and its surface changes very little.

The trouble is that, for all the songs written about the light of the silvery Moon, it’s still not understood exactly how bright the Moon’s reflected light is, at all times and from all angles. Today’s best measurements allow researchers to calculate the Moon’s brightness with uncertainties of a few percent—not quite good enough for the most sensitive measurement needs, says NIST’s Stephen Maxwell. To make up for these shortcomings, scientists have developed complicated workarounds. For example, they must periodically check the accuracy of their satellite images by making the same measurements multiple ways—from space, from the air, and from the ground—simultaneously.

Or, if they want to compare images taken at different times by different satellites, they have to ensure that there is some overlap during their time in space so that the imagers have the chance to measure the same part of the planet at roughly the same time.

But what happens if a research team can’t get a new camera into space before an old one is retired? “You get what’s called a data gap, and you lose the ability to stitch together measurements from different satellites to determine long-term trends,” Maxwell says.

Really knowing how bright the Moon is—with uncertainties of much less than 1 percent—would reduce the need for these logistically challenging solutions and ultimately save money.

So NIST is setting out to take new measurements of the Moon’s brightness. Researchers hope they will be the best measurements to date.

“Brightness” here means, specifically, the amount of sunlight reflecting off the surface of the Moon. Its apparent magnitude is about 400,000 times smaller than the Sun’s, but the Moon’s exact brightness depends on its angle with respect to the Sun and Earth. And those angles follow a complex pattern that repeats roughly every 20 years.

To capture moonlight in their new experiment, researchers will use a small telescope as what Maxwell calls a “light bucket,” designed to collect everything from ultraviolet radiation (about 350 nanometers, billionths of a meter) through the visible spectrum and into the short-wave infrared (2.5 micrometers, millionths of a meter). The 150-millimeter (6-inch) telescope’s single lens is made of a compound called calcium fluoride, which—unlike more common glass—can focus the moonlight from this wide range of wavelengths into a detector.

But that telescope will need to be calibrated before each measurement. So about 15 to 30 meters (50–100 feet) away, the research team will set up a broadband light source—that is, one with a wide distribution of wavelengths—with a reliable output. To validate the broadband source, the scientists will also use a second lamp that emits only a narrow band of wavelengths at a time and can be tuned to different bands as needed. Nightly tests with these calibrated sources will tie the team’s Moon findings to the International System of Units.

Fortunately, the NIST study won’t need to collect data for 20 years, Maxwell says; three to five years will be enough time to gather more than 95 percent of the angles they will need. To get as much unadulterated moonlight as possible, the experiment is scheduled to start taking measurements in 2018 at the Mauna Loa Observatory in Hawaii. Sitting at about 3,300 meters (11,000 feet), on one of the world’s largest volcanoes, the planned site is above much of the distorting influence of Earth’s atmosphere.

Though the experiment will take years to complete, Maxwell thinks even preliminary data will be useful to the community “almost immediately,” as a check against the current system. Earth-facing imagers that could benefit from NIST’s new dataset include the Landsat series, GOES-16, the NOAA-20 (formerly known as JPSS-1), and dozens of commercial satellites.

This article first appeared in Oct. 13, 2017, NIST blog.


About The Author

Jennifer Lauren Lee’s picture

Jennifer Lauren Lee

Jennifer Lauren Lee is a science communicator in the Washington, D.C. area with specialization in physics writing, web design, editing, and multimedia. She is a technical writer and editor at the National Institute of Standards and Technology (NIST) where she writes monthly articles on physics topics for NIST’s Physical Measurement Laboratory (PML), as well as records and edits videos demonstrating physics concepts and experimental setups used at PML to maintain and distribute national standards. Lee has master’s degrees in specialized journalism and science, and bachelor’s degrees in English and world literature.


How Bright is the Moon?

150 micrometers is not ~6 inches, but 150 millimeters is ~6 inches. 150 micrometers is 150 millionths of a meter, not big enough to easily see. Just thought I'd let you know.


Marilyn Davenport who notices things like that sometimes

Nice catch

Nice catch Marilyn Davenport! We have corrected the mistake.