{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

ORNL’s Deep Learning-Based Data Analysis Promises to Accelerate Materials Research

High-resolution microscopy aids understanding and engineering at nanoscale

Photo by Terry Vlisidis on Unsplash

Oak Ridge National Laboratory
Tue, 04/25/2023 - 12:02
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Researchers at the U.S. Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL) have developed a machine learning-inspired software package that provides end-to-end image analysis of electron and scanning probe microscopy images.

ADVERTISEMENT

Known as AtomAI, the package applies deep learning to microscopy data at atomic resolutions, thereby providing quantifiable physical information such as the precise position and type of each atom in a sample.

Using these methods, researchers can quickly derive statistically meaningful information from immensely complex datasets. These datasets routinely include hundreds of images that each contain thousands of atoms and abnormalities in molecular structure. This improvement to data analysis allows researchers to engineer quantum atomically precise abnormalities in materials, and can be used to gain deeper insights into the materials’ physical and chemical qualities.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us