Featured Product
This Week in Quality Digest Live
Health Care Features
Claudine Mangen
If you have the energy to try and address organizational overwork, start small
Gregory Way
Drug designers are rethinking their response to medications that affect multiple targets
Adam Zewe
Research on machine-learning models that can help doctors consult patient records more easily
Karina Montoya
Analysis of social and economic impact bolsters the fight against hepatitis C
Tom Rish
Keep it organized and ready for inspection at any time

More Features

Health Care News
Google Docs collaboration, more efficient management of quality deviations
MIT course focuses on the impact of increased longevity on systems and markets
Delivers time, cost, and efficiency savings while streamlining compliance activity
First responders may benefit from NIST contest to reward high-quality incident command dashboards
Enhances clinical data management for medtech companies
Winter 2022 release of Reliance QMS focuses on usability, mobility, and actionable insights
The tabletop diagnostic yields results in an hour and can be programmed to detect variants of the SARS-CoV-2 virus
First Responder UAS Triple Challenge focuses on using optical sensors and data analysis to improve image detection and location
Free education source for global medical device community

More News

NIST

Health Care

Corkscrewing Electrons: Like Rotini, But Smaller

Coiled electron beams poised to improve microscopes

Published: Tuesday, January 25, 2011 - 06:00

Electron microscopes are among the most widely used scientific and medical tools for studying and understanding a wide range of materials, from biological tissue to miniature magnetic devices, at tiny levels of detail. Now, researchers at the National Institute of Standards and Technology (NIST) have found a novel and potentially widely applicable method to expand the capabilities of conventional transmission electron microscopes (TEMs). Passing electrons through a nanometer-scale grating, the scientists imparted the resulting electron waves with so much orbital momentum that they maintained a corkscrew shape in free space.

View hi-res image

NIST researchers twisted the flat electron wave fronts into a fan of helices using a very thin film with a five-micron-diameter pattern of nanoscale slits, which combines the wave fronts to create spiral forms similar to a pasta maker extruding rotini.
--Credit: B. McMorran/NIST

 

The development opens the possibility of adapting transmission electron microscopy, which can see tinier details than optical microscopy and can study a wider range of materials than scanning probe microscopy, for quick and inexpensive imaging of a larger set of magnetic and biological materials with atomic-scale resolution.

“The spiral shape and angular momentum of these electrons will let us look at a greater variety of materials in ways that were previously inaccessible to TEM users,” says Ben McMorran, one of the authors of the forthcoming research paper. “Outfitting a TEM with a nanograting like we used in our experiment could be a low-cost way to dramatically expand the microscope’s capabilities.”

Although NIST researchers were not the first to manipulate a beam of electrons in this way, their device was much smaller, separated the fanned-out beams 10 times more widely than previous experiments, and spun up the electrons with 100 times the orbital momentum. This increase in orbital momentum enabled them to determine that the electron corkscrew, while remarkably stable, gradually spreads out over time. The group’s work was reported in the Jan. 14 issue of the journal Science.

The corkscrewing electron beams have the potential to help obtain more information from magnetic materials, according to McMorran. “Magnetism, at its most fundamental, results from charges spinning and orbiting, so an electron beam that itself carries angular momentum makes a good tool for probing magnetic materials,” says McMorran.

This technique could also help improve TEM images of transparent objects like biological specimens. Biological material can be difficult to image in ordinary TEMs because electrons pass through them without deflecting. But by using corkscrew electron beams, researchers hope to provide high-contrast, high-resolution images of biological samples by looking at how the spiral wave fronts get distorted as they pass through such transparent objects.

While these imaging applications have not yet been demonstrated, producing corkscrew electrons with nanogratings in a TEM provides a significant step toward expanding the capabilities of existing microscopes.

Discuss

About The Author

NIST’s picture

NIST

Founded in 1901, the National Institute of Standards and Technology (NIST) is a nonregulatory federal agency within the U.S. Department of Commerce. Headquartered in Gaithersburg, Maryland, NIST’s mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.