{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

How to Determine the Worst Case for a Process

Have confidence in the confidence interval

Ken Levine
Wed, 06/29/2016 - 16:56
  • Comment
  • RSS

Social Sharing block

  • Print
  • Add new comment
Body

How do you determine the “worst case” scenario for a process? Is it by assuming the worst case for each process task or step? No. The reason is that the probability of every step having its worst case at the same time is practically zero. What we’re looking for is a value that will occur a very small percentage of the time, but still be a possibility.

ADVERTISEMENT

In statistics, we do this with a confidence interval, typically plus or minus three standard deviations from the mean to achieve 99.7-percent confidence.

For example, let’s say that we have a three-step process, with means and standard deviations of x1 = 20, s1 = 3; x2 = 30, s2 = 5; and x3 = 60, s3 = 9, respectively. Since variation (variance) is additive, the variance of the entire process is therefore:
S2Process = 32 + 52 + 92 = 9 +25 + 81 = 115, and the process standard deviation is:
SProcess = SQRT(115) = 10.7.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Comments

Submitted by Dr Burns on Wed, 06/29/2016 - 15:11

Worst Case

There's lies, damn lies and statistics.  As a junior engineer, I worked in a factory that started making reject.  I was told to keep away while "experts" were brought in to fix it.  They made reject for a month and filled a warehouse with product with "hold" tags.  Suddenly the factory started making good product again.  No one knew why.  The experts were sent home.

Where's the probability figures for that?

Several months later, exactly the same problem occurred during the middle of the night when I was on as shift foreman, in control of the whole factory and two others.  First step was to find the cause, which I did.  The "experts" had forgotten this key action.  My next step was to design a solution.  By morning I'd made major changes to the process and was making good product again.  When management arrived and saw the changes I'd made to the process, I was crucified.

  • Reply

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us