{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

The Global Standard Deviation Statistic

Why it does not filter out the noise

Finding the signal in the noise. "Voided" by Rosa Menkman

Donald J. Wheeler
Mon, 11/02/2020 - 11:03
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Every introductory class in statistics teaches how to obtain a global standard deviation statistic. While this descriptive statistic characterizes the dispersion of the data, it is not the correct value to use when looking for unusual values within the data. Since all of statistical inference is built around the search for unusual values, it is important to understand why we do not use the global standard deviation in this quest.

ADVERTISEMENT

The descriptive statistics taught in introductory classes are appropriate summaries for homogeneous collections of data. But the real world has many ways of creating non-homogeneous data sets. Some of these involve unknown and unplanned changes in the process or procedure producing the measurements. When these occur we talk about “outliers” and “exceptional values.” Other ways of getting unusual values involve the deliberate manipulation of inputs for the purpose of creating changes in the observed data. Here we talk about detecting “signals” and obtaining “significant results.”

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us