{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Democratizing Data Science

Tool for nonstatisticians automatically generates models that glean insights from complex data sets

Rob Matheson
Wed, 02/13/2019 - 12:00
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Democratizing data science is the notion that anyone, with little to no expertise, can do data science if provided ample data and user-friendly analytics tools. MIT researchers are hoping to support that idea with a new tool for nonstatisticians that automatically generates models for analyzing raw data. The tool ingests data sets and generates sophisticated statistical models typically used by experts to analyze, interpret, and predict underlying patterns in data.

ADVERTISEMENT

The tool currently lives on Jupyter Notebook, an open-source web framework that allows users to run programs interactively in their browsers. Users need only write a few lines of code to uncover insights into, for instance, financial trends, air travel, voting patterns, the spread of disease, and other trends.

In a paper presented at this week’s ACM SIGPLAN Symposium on Principles of Programming Languages, the researchers show their tool can accurately extract patterns and make predictions from real-world data sets, and even outperform manually constructed models in certain data-analytics tasks.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us