{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

New Computer Modeling Could Improve Material Design Across Airframes

Virtually stressing airplane wings

Scientists have found a way to improve the simulation of the onset of failure in airplane wings.
Credit: Airbus

NIST
Thu, 06/01/2017 - 12:01
  • Comment
  • RSS

Social Sharing block

  • Print
Body

How do jumbo-jet designers develop resilient materials for modern airframes, while still bringing in their projects on time and on budget? Before they prototype a new material, they depend heavily on computer simulations to indicate how it will perform—and scientists at the National Institute of Standards and Technology (NIST) are making those simulations more effective.

ADVERTISEMENT

A team including NIST scientists has found a way to improve the process of simulating the onset of failure in the materials used to build airplane wings. Understanding this initiation point is critical for predicting when and how wings fail. Their method shows designers how to put a particular sample through a series of stress scenarios to efficiently determine the amount of stretching that will cause it to break.

The approach, according to NIST physicist Paul Patrone, could help address one of the key factors that reduces the effectiveness of simulations: uncertainty in their prediction of the wing’s strength.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us