{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Evaluating Destructive Measurements

You can still put an upper bound on measurement error

Donald J. Wheeler
Mon, 01/09/2017 - 12:01
  • Comment
  • RSS

Social Sharing block

  • Print
Body

What can be done when a test is destructive? How do we characterize measurement error? How can we determine if a test method is adequate for a given product or application? How can we check for bias?

ADVERTISEMENT

All of the techniques for assessing the quality of a measurement system require us to make multiple measurements of the same thing. This allows us to isolate the test-retest error from the product variation so that we can estimate and characterize measurement error. However, when the act of obtaining a measurement also destroys the sample being measured, it becomes impossible to test the same thing twice. So what do we do?

In those cases where we can obtain paired samples that are thought to be reasonably similar, we test the paired samples with our destructive measurement system, and use the difference between the values obtained as an approximation to the test-retest error. While this difference will also contain some amount of product variation, hopefully it will be small. By doing this repeatedly and averaging the results, it is possible to obtain an upper bound on the test-retest error for the measurement system. Our first two examples will illustrate this approach.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us