{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

X-ray Laser LCLS Comes Online

X-ray free-electron laser helps scientists understand fundamental properties of atoms and materials

Argonne National Laboratory
Mon, 09/20/2010 - 08:33
  • Comment
  • RSS

Social Sharing block

  • Print
Body

The recently opened Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory (SNAL) provides scientists around the world with a brilliant new tool to understand fundamental properties of atoms and materials at previously unreachable dimensions. Its birth, however, could not have occurred without the expertise of scientists from Argonne National Laboratory.

ADVERTISEMENT

The LCLS is a powerful example of an X-ray free-electron laser, which comprises a series of magnetic structures called undulators that provide precise magnetic fields through which an electron beam travels. Electrons are forced to oscillate back and forth as they traverse through the undulators, producing large quantities of X-rays. These then interact with the electrons that generated them, causing the electrons to bunch at particular wavelengths; this new bunch pattern dramatically boosts the intensity of the produced X-rays.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us