{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Measuring Complexity

A method for measuring the level of defects effort and development time.

John David Kendrick
Tue, 08/17/2010 - 06:00
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Complexity can be thought of as the level of difficulty in solving mathematically presented problems. Six Sigma practitioners and operations research professionals are often asked to predict the complexity of a hardware or software product by predicting (in man-hours or full-time equivalents) the expected development time, the expected number of customer-facing defects, the expected number of production defects, or the expected level of effort for a new object.

ADVERTISEMENT

One effective approach I employ to solve this problem involves combining two statistical techniques: cluster analysis and principal component analysis. Employing cluster analysis helps to identify objects that are similar. The advantage of cluster analysis over other statistical techniques such as discriminant analysis is that the groups are determined by the cluster analysis and aren’t predetermined before the analysis. After the groups are established, employing principal component analysis, a data reduction technique, enables the practitioner to map the attributes of an object into a cluster of similar objects.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us