Featured Product
This Week in Quality Digest Live
Quality Insider Features
Yoav Kutner
Let salespeople spend more time on customer service, market research, and competitor analysis
Nicholas Wyman
As the pandemic continues to affect millions of jobs, getting people into apprenticeships has never been more vital
Bruce Hamilton
A story of teacher and student
Ryan E. Day
Boeing officially endorses voluntary grounding of its 777 aircraft after Feb. 20, 2021, engine failure
Gleb Tsipursky
Effective engagement can foster productivity and stronger financials

More Features

Quality Insider News
Precision optical instrument helps ventilator maker increase specialty valve production in response to shortage
Single- and three-axis shop-floor dimensional measuring machines for industrial manufacturers
Interfacial launches highly filled, proprietary polymer masterbatches
Allows team to focus on quality control in dimensional measurements and overall machining process
Provides synchronization, compliance, traceability, and transparency within processes
Contactless sensors measure rotating shafts in industrial benchtop and test and measurement applications
‘Completely new diagnostic platform’ could prove to be a valuable clinical tool for detecting exposure to multiple viruses
Design, develop, implement, continually improve risk management in systems and software engineering

More News

MIT News

Quality Insider

New Horizons for Self-Assembling Materials

3D-printable materials deform to change surface area, enabling curvature rather than rigid folding

Published: Tuesday, January 13, 2015 - 09:55

(MIT News: Cambridge, MA) -- Today’s 3D printers, in which devices rather like inkjet-printer nozzles deposit materials in layers to build up physical objects, are a great tool for designers building prototypes or small companies with limited product runs.

But they take a long time to produce objects that are more than a couple of centimeters in height, and many researchers believe that they’ll realize their full potential only when they can generate sheets of patterned materials that will automatically warp themselves into larger, more complex shapes.

In the latest issue of the journal Scientific Reports, a team of researchers at MIT and the companies Autodesk and Stratasys describe a new process for designing and manufacturing such “programmable matter” that could make it more versatile. Whereas much prior work—at MIT and elsewhere—concentrated on materials that self-fold, the new procedure yields materials that also self-stretch.


Hot off the 3D printer, a polymer strand dropped in water folds itself into the MIT logo.

“If a structure is going to change, and curvature appears—like going from a flat domain to something that has effective curvature, such as a mountain—the area is going to change,” says Dan Raviv, a postdoc at the MIT Media Laboratory and lead author on the new paper. “There’s going to be stretching. Until now, people just considered bending, which leaves the area and lengths the same. Or they did some stretching, but without the ability to control or pre-program it. Now we need to develop new sets of tools to do both.”


Time-lapse photos of three basic components of self-assembling materials, changing shape after being immersed in water. The top two are expanding "linear actuators," the bottom one a self-folding hinge.

Raviv is a member of the Media Lab’s Camera Culture group, which is led by associate professor of media arts and sciences Ramesh Raskar and specializes in computational photography. That may sound like a far cry from self-folding materials, but Raviv says that his work focused on geometric interpretations of visual data. The mathematical framework for mapping points of color in an image onto multiple hypothetical 3D models of the underlying scene is very similar to the framework for mapping points on the surface of a self-deforming material onto their final locations.


A printable, self-deforming material that changes its surface area in order to curve in two different directions simultaneously.

Getting physical

Raviv, Raskar, graduate student Achuta Kadambi, and Boxin Shi, another postdoc in Raskar’s group, had been invited to collaborate on the problem of self-assembling printable materials at a presentation last year by Skylar Tibbits, a research scientist in MIT's Department of Architecture who heads the MIT Self-Assembly Lab. Tibbits favors the term “4-D printing” for his lab’s work, where the fourth dimension is the time it takes devices to self-assemble.

The Camera Culture researchers developed algorithms that could determine how much parts of an arbitrary 3D object needed to stretch to accommodate its deformation into another shape. But figuring out how to physically realize that deformation fell to Tibbits’ group.

Much prior work on self-folding materials has involved laminates: A 3D printer or laser cutter would produce patterned sheets of different materials, which researchers would then stick together by hand. One of the materials would bend when heated or immersed in water; the other would hold some parts of the sheet rigid.

But Tibbits was committed to the idea of a truly printable material—one that was ready to go when it came out of the printer. He had been collaborating with researchers at Stratasys, a company that manufactures 3D printers, who had developed a polymer that expands when it absorbs water. Stratasys printers can deposit multiple polymers in each layer of a 3D-printed object, and Tibbits’ group had come up with designs that used combinations of polymers to produce materials that self-folded upon immersion.

Home stretch

Together with Carrie McKnelly, a graduate student, and Athina Papadopoulou, a research specialist—both in the Department of Architecture—Tibbits came up with a simple but elegant design for a “linear actuator,” or a component that would enable segments of his printed materials to stretch. In the component, two polymer disks are connected to each other by two bowed strips of a composite polymer. In profile, the component looks like the insignia of the comic-book superhero the Green Lantern.

The inner edges of the bowed strips are made from the expanding polymer, and when they absorb water, the strips straighten out.

Tibbits’ group experimented with the relative thicknesses of the expanding and rigid layers until they had established a relationship between the diameter of the ellipse produced by the bowed strips and the degree of expansion. They also determined how to striate the disks at the ends of the strips with indentations and layers of expanding polymer so that they would bend in the right directions to accommodate the curvature of the material’s expanding regions.

Once they’d established the performance characteristics of their components, the MIT researchers collaborated with colleagues at Autodesk, a manufacturer of computer-aided-design software, to develop a simulation program that would determine whether devices made from their design specifications would self-assemble as expected. The Autodesk researchers, like those from Stratasys, are co-authors on the new paper.

“It is unclear whether the strategy of 3D printing followed by immersion in water is a technologically viable pathway to creating responsive architectures,” says Jennifer Lewis, a professor in Harvard University’s School of Engineering and Applied Sciences. “Nevertheless, this is an elegant example of 4-D printing.”

Discuss

About The Author

MIT News’s picture

MIT News

The MIT News is the Massachusetts Institute of Technology’s (MIT) central hub for news about MIT research, initiatives, and events. It reports MIT news directly and works with journalists around the world to help showcase the achievements of its students, faculty, and staff.