{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

The Power of Observation, Part 2

Observation is a powerful technique that can be used to help understand manufacturing problems.

James Odom
Wed, 07/08/2009 - 10:34
  • Comment
  • RSS

Social Sharing block

  • Print
Body

In “The Power of Observation—Part 1,” we learned that a good portion of problem solving should be devoted to a thorough understanding of what’s going on before any corrective action steps are taken.

In many cases, too much time is spent on proposing various solutions before the problem has been correctly defined. Observation is a powerful technique that can be used to help understand problems.

At the end of the first part of this article, I promised to share some observational tools and techniques that can help you better understand processes. Here they are:

Process mapping or value stream mapping (See figure 1.). Map the process while walking through it from beginning to end. Look for areas where problems could occur, i.e., scrap, lack of process control, lack of method, etc. Visit the area on different shifts. Are differences in method observed, differences in defects, and so on? Are two pieces of equipment making the same part? If so, can a comparison be made? As you walk the process, think about the 6Ms: machine, material, method, man, measurement, and Mother Nature. Look to see if any of them are controlled, vary (create noise in the system), or are specified by procedure, work instruction, etc.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us