{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Researchers 3D-Print Nanostructured Alloy That’s Ultrastrong and Ductile

Material could improve performance of components for aerospace, medicine, and transportation

Photo by Greg Rosenke on Unsplash
Melinda Rose
Mon, 09/12/2022 - 12:02
  • Comment
  • RSS

Social Sharing block

  • Print
Body

A team of researchers at the University of Massachusetts-Amherst and the Georgia Institute of Technology has 3D-printed a dual-phase, nanostructured, high-entropy alloy that exceeds the strength and ductility of other state-of-the-art additively manufactured materials. The alloy could lead to higher-performance components for applications in aerospace, medicine, energy, and transportation.

ADVERTISEMENT

The research, led by Wen Chen, assistant professor of mechanical and industrial engineering at UMass, and Ting Zhu, professor of mechanical engineering at Georgia Tech, was published in the August 2022 issue of the journal Nature.

During the past 15 years, high-entropy alloys (HEAs) have become popular in materials science. Comprising five or more elements in near-equal proportions, they can create a near-infinite number of combinations for alloy design. Traditional alloys, such as brass, carbon steel, stainless steel, and bronze, contain a primary element combined with one or more trace elements.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us