Featured Product
This Week in Quality Digest Live
Metrology Features
NVision Inc.
Scanning plays a role in extending life span and improving design of A/C systems
Patrice Parent
Integral components of an electric vehicle’s structure are important to overall efficiency, performance
NIST
NIST scientists perfect miniaturized technique
Donald J. Wheeler
The more you know, the easier it becomes to use your data
Miron Shtiglitz
How production managers can increase yield by automating defect detection

More Features

Metrology News
Enables better imaging in small spaces
Helping mines transform measurement of blast movement
Handles materials as thick as 0.5 in., including steel
Presentation and publication opportunities for both portable and stationary measurement leaders
Accelerates service and drives manufacturing profitability
Improved readings despite harsh field conditions
Designed to meet standards, bolster detection, and mitigate work environment hazards
Machine vision market will return to single-digit growth in 2024 following declines in 2023
Enables manufacturers to integrate collaborative robots in operations

More News

MIT News

Metrology

Seeing Below the Surface

Engineers devise new way to inspect advanced materials used to build airplanes

Published: Tuesday, March 29, 2011 - 05:00

In recent years, many airplane manufacturers have started building their planes from advanced composite materials, which consist of high-strength fibers such as carbon or glass, embedded in a plastic or metal matrix. Such materials are stronger and more lightweight than aluminum, but they are also more difficult to inspect for damage because their surfaces usually don't reveal underlying problems.

“With aluminum, if you hit it, there's a dent there,” says Brian L. Wardle, associate professor of aeronautics and astronautics. “With a composite, oftentimes if you hit it, there’s no surface damage, even though there may be internal damage.”

Wardle and his colleagues have devised a new way to detect that internal damage using a simple handheld device and heat-sensitive camera. Their approach also requires engineering the composite materials to include carbon nanotubes, which generate the heat necessary for the test.

Their approach, described in the March 22 online edition of the journal Nanotechnology, could allow airlines to inspect their planes much more quickly, Wardle says. This project is part of a multiyear, aerospace industry-funded effort to improve the mechanical properties of existing advanced aerospace-grade composites. The U.S. Air Force and Navy are also interested in the technology, and Wardle is working with them to develop it for use in their aircraft and vessels.

Uncovering damage

Advanced composite materials are commonly found not only in aircraft but also cars, bridges, and wind-turbine blades, Wardle says.

One method that inspectors now use to reveal damage in advanced composite materials is infrared thermography, which detects infrared radiation emitted when the surface is heated. In an advanced composite material, any cracks or delamination (i.e., separation of the layers that form the composite material) will redirect the flow of heat. That abnormal flow pattern can be seen with a heat-sensitive (i.e., thermographic) camera.

This is effective but cumbersome because it requires large heaters to be placed next to the surface, Wardle says. With his new approach, carbon nanotubes are incorporated into the composite material. When a small electric current is applied to the surface, the nanotubes heat up, which eliminates the need for any external heat source. The inspector can see the damage with a thermographic camera or goggles.

"It's a very clever way to utilize the properties of carbon nanotubes to deliver that thermal energy, from the inside out," says Douglas Adams, associate professor of mechanical engineering at Purdue University. Adams, who was not involved in the research, notes that two fundamental challenges remain: developing a practical way to manufacture large quantities of the new material, and ensuring that the addition of nanotubes does not detract from the material’s primary function of withstanding heavy loads.

The new carbon nanotube hybrid materials that Wardle is developing have so far shown better mechanical properties, such as strength and toughness, than existing advanced composites.

Infrared themographic image of a nanoengineered composite heated via electrical probes (clips can be seen at bottom of image). The scalebar of colors is degrees Celsius. The MIT logo has been machined into the composite, and the hot and cool spots around the logo are caused by the thermal-electrical interactions of the resistive heating and the logo "damage" to the composite. The enhanced thermographic sensing described in the paper works in the same way.
Image: Roberto Guzmán de Villoria, MIT

 

“Seeing Below the Surface,” by Anne Trafton, first appeared in the March, 24, 2011, issue of MITnews. Copyright © MITnews. All rights reserved.

Discuss

About The Author

MIT News’s picture

MIT News

MIT News is the Massachusetts Institute of Technology’s central hub for news about MIT research, initiatives, and events. It reports MIT news directly and works with journalists around the world to help showcase the achievements of its students, faculty, and staff.