That’s fake news. Real news COSTS. Please turn off your ad blocker for our web site.
Our PROMISE: Our ads will never cover up content.
Andy Henderson
Published: Thursday, January 26, 2017 - 12:01 This is the fourth part in a series about my perspective of what the future has in store for various aspects of manufacturing. I approached each aspect by imagining what is possible using what we know to be technically possible today. In part one I covered cutting tools for machining, in part two production management, and in part three inventory management.
In this article, I’m going to describe a vision of a future for product quality. In this future state: Today, data exist in silos. In many cases, the useful information is in the heads of a few key individuals who may not know or communicate with each other. Often, product designers have had limited experience in manufacturing. Their primary concern is product performance, and they have no good way of assessing manufacturability or manufacturing costs. Within manufacturing, some amount of process variability and drift is always present, but when an operation is developed, it is assumed that the incoming parts are in the nominal state because, typically, there is no sharing of as-manufactured product data from one operation to the next. Additionally, the control of the process is manual. A person will review the as-manufactured product data and decide if an adjustment is needed as well as how to make the adjustment based on experience. This person may make a decision using limited data from the history of the process, he may make an error in the decision process, and he may make a mistake when performing the adjustment. Typically, a part has a few critical specifications for the product that ultimately goes to the customer. However, quality checks are performed throughout the manufacturing process in order to catch nonconformances at the source and before extra processing costs are incurred on a part that is scrapped. Specifications are then created to control the quality of intermediate steps, and quality checks are performed. Those specifications have an acceptable range associated with them. The stack-up of the variability from each process step can cause the end-product to be out of tolerance, even though the process steps are acceptable. Or, the specifications on the intermediate steps are conservative, ultimately leading to higher production costs. Each process step is developed assuming that a nominal part was created at the prior step. After the product is manufactured and the customer is using it, there is a limited amount of data that returns to the producer regarding how products are used and, if they fail, the root cause of the failure. In the future, as designers are creating 3D models of products in CAD systems, they will be presented with information regarding the manufacturability of the features and products being designed. The quality data from the manufacturing operations inside the factories will be correlated with product materials, feature shape, and tolerances. When similar materials are used, features created, or tolerances associated with dimensions in the design space, notifications will be presented to the designers to inform them of the capability and costs of existing processes to create similar features on existing products. This will allow designers to make better-informed decisions regarding whether existing manufacturing processes are able to produce the part or features as designed. Coupled with an assessment of customer value for the features and specifications, the designers will be able to make an informed cost-benefit assessment. In the future, as product moves through the manufacturing process, data are measured after each operation and will be used in subsequent operations to improve the product’s end quality. Typically, a part has a few critical specifications for the product that ultimately goes to the customer. However, quality checks are performed throughout the manufacturing process in order to catch nonconformances at the source and before extra processing costs are incurred on a part that is scrapped. Specifications are then created to control the quality of intermediate steps, and quality checks are performed. Those specifications have an acceptable range associated with them. The stack-up of the variability from each process step can cause the end-product to be out of tolerance, even though the process steps are acceptable. Or, the specifications on the intermediate steps are conservative, ultimately leading to higher production costs. Each process step is developed assuming that a nominal part was created at the prior step. The measurements from prior processing steps will be used to adjust downstream processing steps to ensure that each step is aligned with producing products that meet the critical requirements of the product that goes to the customer. This will allow more flexibility in upstream processes because the in-process tolerances will not need to be as conservative. If customer requirements drive more stringent tolerances, this capability may enable existing equipment to meet the more stringent requirements. This could apply beyond dimensional measurements. For example, material composition or hardness, measured at the foundry, could be used in subsequent machining operations to optimize speeds and feeds on a per-part basis. As an individual operation output begins to drift or shift, the process control system will automatically adjust the operation to ensure that it stays in control. Systems exist for this today, but they rely on simple rules for making adjustments. For example, if a dimension is trending high or low, then an adjustment will be made to the machine to compensate. However, in relation to complex parts, dimensions have multiple relationships to other dimensions, and adjusting one may have a negative effect on another. Future systems will utilize artificial intelligence to recognize the relationships between dimensions and make appropriate adjustments to processing equipment. In the future, the customer will monitor products while in use, and the data will be used throughout the entire business for improving design, production, and end use. Monitoring the quality of a product’s performance will have benefits for the customer with regards to predictions associated with product malfunctions and product downtime. This will lead to better scheduling and parts inventory management for the customer. Other benefits will come from a data-based understanding of how the customer utilizes the product. This knowledge will drive further product development, which is more focused on customer uses. The data from real usage and any failures will be analyzed, and correlations with manufacturing quality data will be analyzed to alert factories of issues. In this article I’ve explored a few possibilities of how quality data will be used in the future. Quality data will permeate throughout the product’s life cycle. It will enable design departments to create more producible parts, manufacturing costs will decrease, and customer data will complete the loop for improved future products. First published on the GE Digital blog. Quality Digest does not charge readers for its content. We believe that industry news is important for you to do your job, and Quality Digest supports businesses of all types. However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads. So please consider turning off your ad blocker for our site. Thanks, As an industry analyst at GE Digital, Andy Henderson leverages his experience from his time as an advanced manufacturing engineer within GE Power and his research during his doctoral program to promote a vision for the future of heavy industry/discrete manufacturing and drive strategy for achieving that vision.A Perspective of the Manufacturing Future,
Part 4Product quality
• A product’s manufacturability will be known during the design stage.
• As-manufactured product data will be shared between manufacturing operations to reduce nonconformances.
• Manufacturing process variability will be monitored and controlled to minimize lost productivity.
• As-manufactured product data will be utilized to optimize product performance for customers.The current state of product quality
The future of manufacturability
The future of manufacturing quality
The future of life-cycle quality
Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.
Quality Digest Discuss
About The Author
Andy Henderson
© 2023 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute, Inc.