Featured Product
This Week in Quality Digest Live
Lean Features
Gene Kaschak
Lean supply is not just about the size of inventory
Eight unique best-practice sessions featuring 11 process improvement and thought leaders
Harish Jose
Learning how to better ask “Why?”
Del Williams
Advanced electrode boilers reduce risk of explosion, fire, and noxious emissions associated with fossil-fuel burning units

More Features

Lean News
From excess inventory and nonvalue work to $2 million in cost savings
Tactics aim to improve job quality and retain a high-performing workforce
Sept. 28–29, 2022, at the MassMutual Center in Springfield, MA
Enables system-level modeling with 2D and 3D visualization, reducing engineering effort, risk, and cost
It is a smart way to eliminate waste and maximize value
Simplified process focuses on the fundamentals every new ERP user needs
DigiLEAN software helps companies digitize their lean journey
Partnership embeds quality assurance at every stage of the product life cycle, enables agile product introduction
First trial module of learning tool focuses on ISO 9001 and is available now

More News

Adam Conner-Simons


Less Wasteful Laser Cutting

Fabricaide, developed at MIT CSAIL, provides live design feedback to help users reduce leftover material

Published: Thursday, March 11, 2021 - 13:03

Laser cutting is an essential part of many industries, from car manufacturing to construction. However, the process isn’t always easy or efficient. Cutting huge sheets of metal requires time and expertise, and even the most careful users can still produce huge amounts of leftover material that go to waste. The underlying technologies that use lasers to cut edges aren’t actually all that cutting-edge: Users are often in the dark about how much of each material they’ve used, or if a design they have in mind can even be fabricated.

With this in mind, researchers from MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) have created a new tool called Fabricaide that provides live feedback on how different parts of the design should be placed onto their sheets—and can even analyze exactly how much material is used. 

Fabricaide: a tool for less wasteful laser-cutting

“By giving feedback on the feasibility of a design as it’s being created, Fabricaide allows users to better plan their designs in the context of available materials,” says Ph.D. student Ticha Sethapakdi, who led the development of the system alongside MIT professor Stefanie Mueller, undergraduate Adrian Reginald Chua Sy, and Carnegie Mellon University Ph.D. student Daniel Anderson.

Frabicaide has a workflow that the team says significantly shortens the feedback loop between design and fabrication. The tool keeps an archive of what the user has done, tracking how much of each material is left. It also allows the user to assign multiple materials to different parts of the design to be cut, which simplifies the process so that it’s less of a headache for multimaterial designs. 

Another important element of Fabricaide is a custom 2D packing algorithm that can arrange parts onto sheets in an optimally efficient way, in real time. The team showed that their algorithm was faster than existing open-source tools, while producing comparable quality. (The algorithm can also be turned off, if the user already knows how she wants to arrange the materials.)

“A lot of these materials are very scarce resources, and so a problem that often comes up is that a designer doesn’t realize that they’ve run out of a material until after they’ve already cut the design,” says Sethapakdi. “With Fabricaide, they’d be able to know earlier so that they can proactively determine how to best allocate materials.”

As the users create their designs, the tool optimizes the placement of parts onto existing sheets and provides warnings if there is insufficient material, with suggestions for material substitutes (for example, using 1 mm-thick yellow acrylic instead of 1 mm red acrylic). Fabricaide acts as an interface that integrates with existing design tools, and is compatible with both 2D and 3D CAD software like AutoCAD, SolidWorks, and even Adobe Illustrator.

In the future the team hopes to incorporate more sophisticated properties of materials, like how strong or flexible they must be. The team says that they could envision Fabricaide being used in shared makerspaces as a way to reduce waste. A user might see that, say, 10 people are trying to use a particular material, and can then switch to a different material for the design in order to conserve resources.

The project was supported, in part, by the National Science Foundation.

First published Feb. 17, 2021, on MIT News.


About The Author

Adam Conner-Simons’s picture

Adam Conner-Simons

Adam Conner-Simons is a communications professional, consultant, and content creator who has 15+ years of experience in journalism and public relations. He oversees communications and public relations for MIT’s largest research lab, the Computer Science and Artificial Intelligence Lab (CSAIL) leading all efforts related to media outreach, digital strategy, social media, web content, as well as speechwriting, and translating difficult concepts for general audiences. He regularly speaks about communications and media relations at conferences. As a freelance writer he contributes regularly to outlets such as The New York TimesSlate Magazine, and The Boston Globe.