Featured Video
This Week in Quality Digest Live
Innovation Features
Laurel Thoennes @ Quality Digest
One decision changes your entire reality
MIT News
Data scientists find that artificial data give the same results as real without compromising privacy
NIST
Understanding how RF platforms work in industrial settings
Dirk Dusharme @ Quality Digest
It’s not about jobs... believe me
Tom Scaletta
Timely, objective, patient-specific comments and data can help physicians enhance patient satisfaction

More Features

Innovation News
Brilliant inventions from the ‘American Idol for Nerds’
With 90% power savings, it could make speech recognition ubiquitous in electronics
Study finds law-breaking property that could lead to applications in thermoelectrics, window coatings
Three phases and challenges
By 2025, four levels of self-learning technology will be in play
Automaker’s decision marks reversal on plans to build new plant in Mexico
Mechanical engineer builds animal-like machines for use in disaster response

More News

Lawrence Berkeley National Laboratory

Innovation

For This Metal, Electricity Flows, but Not the Heat

Study finds law-breaking property that could lead to applications in thermoelectrics, window coatings

Published: Wednesday, February 22, 2017 - 13:00

There’s a known rule-breaker among materials, and a new discovery by an international team of scientists adds more evidence to back up the metal’s nonconformist reputation. According to a new study led by scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and at the University of California, Berkeley, electrons in vanadium dioxide can conduct electricity without conducting heat.

The findings, to be published in the Jan. 27, 2017, issue of the journal Science, could lead to a wide range of applications, such as thermoelectric systems that convert waste heat from engines and appliances into electricity.

Berkeley Lab scientists Junqiao Wu, Fan Yang, and Changhyun Ko (l-r) are working at the nano-Auger electron spectroscopy instrument at the Molecular Foundry, a DOE Office of Science User Facility. They used the instrument to determine the amount of tungsten in the tungsten-vanadium dioxide (WVO2) nanobeams. (Credit: Marilyn Chung/Berkeley Lab)

Berkeley Lab scientists Junqiao Wu, Changhyun Ko, and Fan Yang (l-r) are working at the nano-Auger electron spectroscopy instrument at the Molecular Foundry, a DOE Office of Science User Facility. They used the instrument to determine the amount of tungsten in the tungsten-vanadium dioxide (WVO2) nanobeams. (Credit: Marilyn Chung/Berkeley Lab)

For most metals, the relationship between electrical and thermal conductivity is governed by the Wiedemann-Franz Law. Simply put, the law states that good conductors of electricity are also good conductors of heat. That is not the case for metallic vanadium dioxide, a material already noted for its unusual ability to switch from an insulator to a metal when it reaches a balmy 67°C (152°F).

“This was a totally unexpected finding,” said study principal investigator Junqiao Wu, a physicist at Berkeley Lab’s Materials Sciences Division and a UC Berkeley professor of materials science and engineering. “It shows a drastic breakdown of a textbook law that has been known to be robust for conventional conductors. This discovery is of fundamental importance for understanding the basic electronic behavior of novel conductors.”

In the course of studying vanadium dioxide’s properties, Wu and his research team partnered with Olivier Delaire at DOE’s Oak Ridge National Laboratory and an associate professor at Duke University. Using results from simulations and X-ray scattering experiments, the researchers were able to tease out the proportion of thermal conductivity attributable to the vibration of the material’s crystal lattice, called phonons, and to the movement of electrons.

Vanadium dioxide (VO2) nanobeams synthesized by Berkeley researchers show exotic electrical and thermal properties. In this false-color scanning electron microscopy image, thermal conductivity was measured by transporting heat from the suspended heat source pad (red) to the sensing pad (blue). The pads are bridged by a VO2 nanobeam. (Credit: Junqiao Wu/Berkeley Lab)

To their surprise, they found that the thermal conductivity attributed to the electrons is 10 times smaller than what would be expected from the Wiedemann-Franz Law.

“The electrons were moving in unison with each other, much like a fluid, instead of as individual particles like in normal metals,” said Wu. “For electrons, heat is a random motion. Normal metals transport heat efficiently because there are so many different possible microscopic configurations that the individual electrons can jump between. In contrast, the coordinated, marching band-like motion of electrons in vanadium dioxide is detrimental to heat transfer as there are fewer configurations available for the electrons to hop randomly between.”

Notably, the amount of electricity and heat that vanadium dioxide can conduct is tunable by mixing it with other materials. When the researchers doped single crystal vanadium dioxide samples with the metal tungsten, they lowered the phase transition temperature at which vanadium dioxide becomes metallic. At the same time, the electrons in the metallic phase became better heat conductors. This enabled the researchers to control the amount of heat that vanadium dioxide can dissipate by switching its phase from insulator to metal and vice versa, at tunable temperatures.

Such materials can be used to help scavenge or dissipate the heat in engines, or be developed into a window coating that improves the efficient use of energy in buildings, the researchers said.

“This material could be used to help stabilize temperature,” said study co-lead author Fan Yang, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry, a DOE Office of Science user facility where some of the research was done. “By tuning its thermal conductivity, the material can efficiently and automatically dissipate heat in the hot summer because it will have high thermal conductivity, but prevent heat loss in the cold winter because of its low thermal conductivity at lower temperatures.”

Vanadium dioxide has the added benefit of being transparent below about 30°C (86°F), and absorptive of infrared light above 60°C (140°F).

Yang noted that there are more questions that need to be answered before vanadium dioxide can be commercialized, but said that this study highlights the potential of a material with “exotic electrical and thermal properties.”

While there are a handful of other materials besides vanadium dioxide that can conduct electricity better than heat, those occur at temperatures hundreds of degrees below zero, making it challenging to develop into real-world applications, the scientists said.

Other co-lead authors of the study include Sangwook Lee at Kyungpook National University in South Korea, Kedar Hippalgaonkar at the Institute of Materials Research and Engineering in Singapore, and Jiawang Hong at the Beijing Institute of Technology in China. Lee and Hippalgaonkar started work on this paper as postdoctoral researchers at UC Berkeley. Hong began his work as a postdoctoral researcher at Oak Ridge National Laboratory. The full list of authors is available online.

Additional support for this work came through the use of facilities supported by the Electronic Materials Program at DOE’s Office of Science.

Discuss

About The Author

Lawrence Berkeley National Laboratory’s picture

Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory (Berkeley Lab) is a U.S. Department of Energy National Laboratory managed by the University of California; and it’s charged with conducting unclassified research across a wide range of scientific disciplines. Berkeley Lab has trained thousands of university science and engineering students. It was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist and Nobel Prize winner whose belief was that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.