Featured Product
This Week in Quality Digest Live
Innovation Features
Tamela Serensits
Establish a profitable quality program in 2021
Andrew Peterson
Small manufacturers want robots with more human-like dexterity and self-control
Ryan E. Day
Can lean manufacturing ease the U.S. housing crisis?
Quality Digest
This year, more companies will make the cyber-leap as an online marketing strategy
Knowledge at Wharton
Research shows creativity happens through collaboration, but remote workers find it hard to feel connected

More Features

Innovation News
Interfacial launches highly filled, proprietary polymer masterbatches
‘Completely new diagnostic platform’ could prove to be a valuable clinical tool for detecting exposure to multiple viruses
Precitech ships Nanoform X diamond turning lathe to Keene State College
Galileo’s Telescope describes how to measure success at the top of the organization, translate down to every level of supervision
Realistic variations in glossiness could aid fine art reproduction and the design of prosthetics
NSF-funded project is developing a model to help manufacturers pivot and produce personal protective equipment
Despite being far from campus because of the pandemic, some students are engineering a creative way to stay connected
What continual improvement, change, and innovation are, and how they apply to performance improvement

More News

Lawrence Livermore National Laboratory

Innovation

Lab Study of Droplet Dynamics Advances 3D Printing

Liquid metal jetting is highly stable and repeatable, but extremely challenging to model

Published: Thursday, January 7, 2021 - 12:02

A team of Lawrence Livermore National Laboratory (LLNL) scientists has simulated the droplet-ejection process in an emerging metal 3D-printing technique called “liquid metal jetting” (LMJ), a critical aspect to the continued advancement of liquid metal printing technologies.

In their paper, which was published in the journal Physics of Fluids, the team describes the simulating of metal droplets during LMJ, a novel process in which molten droplets of liquid metal are jetted from a nozzle to 3D-print a part in layers. The process does not require lasers or metal powder and is more similar to inkjet printing techniques.

Using the model, researchers studied the primary breakup dynamics of the metal droplets, essential to improving the understanding of LMJ. LMJ has advantages over powder-based approaches in that it provides a wider material set and does not require production or handling of potentially hazardous powders, researchers said.

“We don’t currently have a good understanding of all of the physics that occur right when the droplet breaks off from the metal jet,” says co-author Andy Pascall. “This model points to additional physical mechanisms that might need to be considered to close the gap between experiments and modeling.”

To conduct the research, the team built a custom, liquid-metal printer capable of dispensing tin droplets. Combined with high-speed video, the printer served as an experimental test bed for free-form, droplet-on-demand printing and allowed the team to track detailed droplet dynamics during the ejection process.


A comparison between the experimentally observed ejected droplet shape at break-up (left) and the simulated droplet shape (right) at various operating conditions approaching the experimental conditions. The simulated droplet shape significantly differs from experiments, highlighting the fact that essential physics appear to be missing from the model. Image courtesy of Andy Pascall/LLNL.

The video analysis enabled researchers to build a computational model to simulate the morphology of the metal droplets during ejection, revealing that the drops behave like an extruded “pill” with no tail formation.

The study demonstrates that while LMJ is highly stable and repeatable, it also is extremely challenging to model. In the future, the team plans to explore droplet ejection across a broader range of process parameters and seek greater understanding of the factors impacting droplet shape, breakup, and satellite formation, including thermal effects, wettability, and the role of surface oxides.

The Laboratory Directed Research and Development program funded the work. Co-authors include Victor Beck, Nicholas Watkins, Ava Ashby, Aiden Martin, Phillip Paul, and principal investigator Jason Jeffries.

Discuss

About The Author

Lawrence Livermore National Laboratory’s picture

Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory’s (LLNL) focus remains as clear as it was when it opened its doors in 1952: ensuring the nation’s security through scientific research and engineering development, responding to new threats in an ever-changing world, and developing new technologies that will benefit people everywhere. At LLNL, physicists, chemists, biologists, engineers, computer scientists, and other researchers work together in multidisciplinary teams to achieve technical innovations and scientific breakthroughs that make possible solutions to critical problems of national and global importance.