{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Lab Study of Droplet Dynamics Advances 3D Printing

Liquid metal jetting is highly stable and repeatable, but extremely challenging to model

Lawrence Livermore National Laboratory
Thu, 01/07/2021 - 12:02
  • Comment
  • RSS

Social Sharing block

  • Print
Body

A team of Lawrence Livermore National Laboratory (LLNL) scientists has simulated the droplet-ejection process in an emerging metal 3D-printing technique called “liquid metal jetting” (LMJ), a critical aspect to the continued advancement of liquid metal printing technologies.

ADVERTISEMENT

In their paper, which was published in the journal Physics of Fluids, the team describes the simulating of metal droplets during LMJ, a novel process in which molten droplets of liquid metal are jetted from a nozzle to 3D-print a part in layers. The process does not require lasers or metal powder and is more similar to inkjet printing techniques.

Using the model, researchers studied the primary breakup dynamics of the metal droplets, essential to improving the understanding of LMJ. LMJ has advantages over powder-based approaches in that it provides a wider material set and does not require production or handling of potentially hazardous powders, researchers said.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us