{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

        
User account menu
Main navigation
  • Topics
    • Customer Care
    • Regulated Industries
    • Research & Tech
    • Quality Improvement Tools
    • People Management
    • Metrology
    • Manufacturing
    • Roadshow
    • QMS & Standards
    • Statistical Methods
    • Resource Management
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • Customer Care
    • Regulated Industries
    • Research & Tech
    • Quality Improvement Tools
    • People Management
    • Metrology
    • Manufacturing
    • Roadshow
    • QMS & Standards
    • Statistical Methods
    • Supply Chain
    • Resource Management
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Training

How to Unlock the AI Promise

Standards under development seek to make AI practical for more settings

Adobe Stock

ISO
Bio
Wed, 12/04/2019 - 12:01
  • Comment
  • RSS

Social Sharing block

  • Print
Body

As artificial intelligence (AI) becomes increasingly ubiquitous in various industry sectors, establishing a common terminology for AI and examining its various applications is more important than ever. In the international standardization arena, much work is being undertaken by ISO/IEC’s joint technical committee JTC 1—Information technology—Subcommittee SC 42—Artificial intelligence, to establish a precise and workable definition of AI. Through its working group WG 4, SC 42 is looking at various use cases and applications. The convener of SC 42/WG 4 is Fumihiro Maruyama, senior expert on AI at Fujitsu Laboratories.

ADVERTISEMENT

Currently, there are a total of 70 use cases that the working group is examining. Health, for example, is a fascinating area to explore. Maruyama himself describes one use case in which a program undertakes a “knowledge graph” of 10 billion pieces of information from existing research papers and databases in the medical field. The application then attempts to form a path representing the likely development from a given gene mutation to the disease that deep learning has predicted from the mutation.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password
You Might Like...
What's a 150-year Old Meat Chopper Have to do With America's Favorite Muscle Car?
How Remote Sensing and Aerial Imagery Can Improve Audit Accuracy
How to Get Your Employees to Love Your Brand
How DIY AI Unlocks Productivity and Flexibility
Which KPIs Prove Your Maintenance Plan Is Working?

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.

© 2026 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us