{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Electron Microscopy Is Overdue for a Closer Look

Integrating AI and machine learning into the microscopy workflow would enable new experiments and discoveries

Johns Hopkins University
Tue, 03/23/2021 - 12:02
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Since they came into use in 1938, electron microscopes have played a pivotal role in a host of scientific advances, including the discovery of new proteins and therapeutics as well as contributions made to the electronics revolution. But the field of electron microscopy must incorporate the latest advances in data science and artificial intelligence to realize its full potential in the years ahead, according to a global research team co-led by Mitra Taheri, professor of materials science and engineering at Johns Hopkins University’s Whiting School of Engineering.

ADVERTISEMENT

In a commentary in Nature Materials, Taheri and the team discuss a model for an open, highly integrated, and data-driven microscopy architecture needed to address future challenges in the field such as energy storage, quantum information science, and materials design. They recommend an approach that integrates artificial intelligence and machine learning into each step of the microscopy workflow, enabling experiments and discoveries not possible with today’s microscopy technology alone.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us