{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

Despite Impressive Output, Generative AI Lacks Understanding of the World

Even the best-performing large language models don’t form a true model

Even high-tech generative AI fails when up against real world problems. Photo by Chris Cordes on Unsplash

Adam Zewe
Mon, 11/18/2024 - 12:02
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Large language models can do impressive things, like write poetry or generate viable computer programs, even though these models are trained to predict words that come next in a piece of text.

ADVERTISEMENT

Such surprising capabilities can make it seem like the models are implicitly learning general truths about the world.

But that isn’t necessarily the case, according to a new study. Researchers found that a popular type of generative AI model can provide turn-by-turn driving directions in New York City with near-perfect accuracy—without having formed an accurate internal map of the city.

Despite the model’s uncanny ability to navigate effectively, when the researchers closed some streets and added detours, its performance plummeted.

When they dug deeper, the researchers found that the New York maps the model implicitly generated had many nonexistent streets curving between the grid and connecting faraway intersections.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us