PROMISE: Our kitties will never sit on top of content. Please turn off your ad blocker for our site.
puuuuuuurrrrrrrrrrrr
Lawrence Livermore National Laboratory
Published: Thursday, February 4, 2016 - 16:14 Although the most common method of metal 3D printing is growing exponentially, moving forward from producing prototypes to manufacturing critical parts will be possible only by reaching a fundamental understanding of the complex physics behind the process, according to a new paper written by Lawrence Livermore National Laboratory (LLNL) researchers.
The powder bed fusion process, also known as selective laser melting (SLM), requires thin layers of a metal powder to be spread across a build area, where they are fused by a laser or electron beam based on a 3D computer-aided design (CAD) model. The process is repeated until a part is produced, layer by layer, from the bottom up. Even though the method has quickly progressed into a production technology, 3D printing of metal parts (also known as metal additive manufacturing) for industries such as aerospace and healthcare is hampered, according to LLNL’s Wayne King, by a lack of confidence in the finished parts. According to King, this hurdle can be overcome by a combination of physics-based modeling and high-performance computing to determine the optimal parameters for building each part. “If we want to put parts into critical applications, they have to meet quality criteria,” says King, leader of the lab’s Accelerated Certification of Additively Manufactured Metals Project (ACAMM). “Our project is focused on developing a science-based understanding of the additive manufacturing process to build confidence in the quality of parts. We want to accelerate certification and qualification to take advantage of the flexibility that metal additive manufacturing gives us. Ideally, our plants would like to build a part on Monday that can be qualified, and on Tuesday use the same machine to build a different part that can also be qualified.” In a paper published in the January edition of Applied Physics Reviews that was commissioned by the publication, King and his team describe two physics-based models for the selective laser melting process on scales varying from the particulate powder to the whole part or component. The team’s comprehensive powder model addresses the formation, evolution, and solidification of the melt pool, and could be used to better understand how laser power, speed, beam size, and shape affect different types of metals and develop parameters for new materials, the researchers said. It also could provide insights into the dominant physical processes in the laser-powder interaction and guide improvements to the SLM method in the future, according to Andy Anderson, a co-author of the paper. The part-scale model simulates the 3D printing of full-scale parts, calculating the effects of stress and heat arising from a given type of metal, and laser process parameters. It could improve predictions of deformation and stresses during printing that can lead to part failure, as well as help improve quality, eliminating much of the guesswork involved in creating new parts. “By modeling the fabrication, you can see what is the aggregate behavior of the part and essentially build in compensations,” says Bob Ferencz, LLNL’s division leader for computational engineering, and a co-author of the paper. “If there is warping, we can warp the target geometry to arrive at the correct net shape. The benefit of simulations is that you can slow down the process, and hopefully that informs you as to mitigations for the mechanisms you see as the cause of the failure.” Combining the physics models with data-mining technologies and uncertainty analyses could optimize metal parts without the cost of multiple experiments, and aid in more widespread adoption of metal 3D printing, the researchers said. “These models will be a big step forward toward getting away from the experience base and getting the science base behind it,” says King. “We’re talking about getting to the place of saying ‘just press print’ for metal. It could broadly impact the way people apply metal additive manufacturing.” Other LLNL scientists and researchers contributing to the three-year study include Neil Hodge, Chandrika Kamath, Saad Khairallah, and Alexander Rubenchik. The Laboratory Directed Research and Development (LDRD) Program at LLNL funded the team’s work. Quality Digest does not charge readers for its content. We believe that industry news is important for you to do your job, and Quality Digest supports businesses of all types. However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads. So please consider turning off your ad blocker for our site. Thanks, Lawrence Livermore National Laboratory’s (LLNL) focus remains as clear as it was when it opened its doors in 1952: ensuring the nation’s security through scientific research and engineering development, responding to new threats in an ever-changing world, and developing new technologies that will benefit people everywhere. At LLNL, physicists, chemists, biologists, engineers, computer scientists, and other researchers work together in multidisciplinary teams to achieve technical innovations and scientific breakthroughs that make possible solutions to critical problems of national and global importance.
Researchers Outline Physics of Metal 3D Printing
Getting to ‘just press print’
From left: Lawrence Livermore National Laboratory researchers—Ibo Matthews, a principal investigator leading the lab’s effort on the joint open source software project; Wayne King, director of the Accelerated Certification of Additively Manufactured Metals Initiative; and Gabe Guss, engineering associate—examine a 3D-printed part manufactured using the selective laser melting process.
Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.
Quality Digest Discuss
About The Author
Lawrence Livermore National Laboratory
© 2023 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute, Inc.
Comments
AM Barriers
Understanding the physics in greater detail will pbe a great step forward. Unfortunately, until methods are developed and proven to be able to verify the integrity of the part produced, neither the medical nor aerospace arenas will accept parts for any critical function. Perhaps understanding the physics will provide a springboard toward that goal.