PROMISE: Our kitties will never sit on top of content. Please turn off your ad blocker for our site.
puuuuuuurrrrrrrrrrrr
David H. Parker
Published: Wednesday, May 20, 2020 - 21:22 It is well known that the speed of light depends on the index of refraction of the medium in which the light is propagating. It is also well known that in a dispersive medium, the speed of an amplitude modulated wavefront depends on the group refractive index, i.e., slightly slower than the carrier light. Corrections for the group refractive index in air are typically made for temperature, humidity, and pressure—without which measurements could be in error by tens of parts per million. The internal instrument optical elements are also subject to dispersive effects, which have heretofore been ignored in the literature—and presumably in the design. Note that this is probably because no commercially available optical design software package models amplitude modulated wavefronts. A thought experiment will illustrate the problem. From Fermat’s principal, a plane wave intersecting a converging lens bends the wave to converge at a focal point. The lens is shaped such that the propagation time to the focal point is the same for all rays. For example, a ray passing through the outer radius of the lens passes through a thinner section of glass but must propagate a longer distance to the focus. A ray passing through the center of the lens passes through a thicker section of glass but propagates through a shorter distance to the focus. However, for optical amplitude modulated (OAM) light, the modulated wavefront, which has two sidebands that propagate at slightly different speeds in a dispersive medium, does not reach the focus at the same time! In other words, there is a slight phase shift in the modulated wavefront between the beam passing through the center of the lens, and the beam passing through the outer radius of the lens. This makes the net phase of the modulated waverfont, as received by a detector at the focal point, dependent on the beam geometry—which most likely depends on distance, due to divergence of the beam. At close range, the majority of the received beam passes through the center of the lens, due to the small beam size. At long range, the received beam passes through the entire lens, due to the expanded beam filling the lens. This source of error can be misinterpreted as being due to distance or power level, when in fact it is the optical design. Spherical, or cat’s eye, retroreflectors are also subject to the same source of error. A simple test to measure the errors is proposed. To access this complete paper, please visit online at the Coordinate Metrology Society website to download this technical paper as well as others presented at past CMSC events. Quality Digest does not charge readers for its content. We believe that industry news is important for you to do your job, and Quality Digest supports businesses of all types. However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads. So please consider turning off your ad blocker for our site. Thanks, David H. Parker is the president of Parker Intellectual Property Enterprises LLC. With an master’s degree in physics and a bachelor’s degree in electrical engineering from Auburn University, Parker has more than 40 years of engineering experience, more than 30 years of metrology experience, and more than 10 years of patent-prosecution experience. Parker is a registered patent agent, a registered professional engineer, and holds 13 U.S. patents, with two U.S. patents pending.Subtle Sources of Error in Laser Trackers Due to Dispersion in the Internal Optical Elements
Practical implications for electronic distance measurement
Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.
Quality Digest Discuss
About The Author
David H. Parker
© 2023 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute, Inc.