Featured Video
This Week in Quality Digest Live
Quality Insider Features
Davis Balestracci
No more Cro-Magnon mediocrity
Elisa K. Spain
Let the system manage accountability
Christian Rockwell
New language and new thinking require new tools
Taran March @ Quality Digest
Seems you can teach a new dog old tricks
Ryan E. Day @ Quality Digest
For Manitowoc Cranes, seeing ROI is believing

More Features

Quality Insider News
By 2025, four levels of self-learning technology will be in play
Automaker’s decision marks reversal on plans to build new plant in Mexico
Mechanical engineer builds animal-like machines for use in disaster response
An effective learning tool in a manufacturing environment
Recognized for continuous efforts to help food and beverage manufacturers achieve excellence in quality
Interlinked system provides seamless link from vendor to supplier on a single platform
New company will focus on technologies for the management and automation of vital clinical processes
Ergonomic, safety, and reliability enhancements comply with the latest European standards

More News








MIT News

Quality Insider

Smarter Robot Arms

Two algorithms allow autonomous robots to execute tasks more efficiently and predictably

Published: Tuesday, September 27, 2011 - 11:27

Ask someone with her hands in her lap to pick up a coffee mug on the table she’s sitting at, and she’ll extract her hand from under the table and stretch her arm out toward the mug. Instruct an autonomous robot to perform the same feat, and it may think for a few seconds, zigzag its robotic hand back and forth under the table, then perform what looks like calisthenics for a few seconds more before finally reaching for the mug.

As intuitive as it seems to a human being, spontaneously planning a trajectory around obstacles in free space is a monstrously complex computation. As a consequence, most motion-planning algorithms give up on the idea of finding the most efficient path between the robot’s initial state and its goal, settling for any path that won’t introduce collisions.

By combining two innovative algorithms developed at MIT, researchers in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Laboratory for Information and Decision Systems (LIDS) have built a new robotic motion-planning system that calculates much more efficient trajectories through free space. This month at the Institute of Electrical and Electronics Engineers’ (IEEE) International Conference on Intelligent Robots and Systems, they’ll present a paper that describes the application of the algorithm to a robotic arm.

Not only do robots guided by the system move more efficiently, saving time and energy, but they also move more predictably, a crucial consideration if they’re to interact with humans. “People are most comfortable when the robot behaves in the way that a human would,” says Matthew Walter, a CSAIL research scientist and one of the new paper’s co-authors. And human actions tend to follow the most direct routes from origin to goal. “You’d expect them to execute some form of optimal path,” Walter says. “The problem with most motion planners is that while they’re very good at finding feasible solutions for very complex systems, they’re not very good at finding optimal paths.”

Figure 1: In these time-lapse photos, a robot is guided by two different algorithms as it attempts to grasp a coffee cup on a desk. In the first (top), the robot flails about randomly before reaching toward the cup. But when it runs a new algorithm designed by MIT researchers (bottom), its movements are much more efficient and predictable. (Images: Sertac Karaman)

In principle, calculating the optimal path requires evaluating every possible path in turn, rejecting those that introduce collisions with obstacles, and selecting the most efficient of those that remain. But for a robot with enough freedom of motion, that’s a prohibitively time-consuming calculation. So typically, Walter explains, a motion-planning algorithm will instead start randomly picking points in its environment, determining whether each is reachable from the closest point that’s already been evaluated.

In this way, the algorithm builds up a map of short, collision-free trajectories between points, rather like a subway map overlaid on the map of a city. As long as it sticks to these established trajectories, it knows it can get from any point to any other. But as with a subway map, the best route between two points could turn out to be very circuitous.

Earlier this summer, graduate student Sertac Karaman and associate professor of aeronautics, and astronautics Emilio Frazzoli, both of LIDS, presented a new variation on that algorithm that yields much more efficient trajectories. Every time the algorithm evaluates a new, randomly selected point, it doesn’t just determine whether it’s reachable from the closest previously evaluated point. Instead, it considers all the previously evaluated points within a fixed radius of the new one and determines which would offer the shortest path from the starting point. This leads to paths that are much closer to the optimum.

Frazzoli and Karaman join Walter, CSAIL professor Seth Teller, research affiliate Alexander Shkolnik, and Alejandro Perez (now at Cornell) on the new paper. To make their controller even more efficient, the researchers adapted yet another algorithm, which Shkolnik developed for his Ph.D. thesis. Shkolnik’s algorithm assumes that every new point it adds to its map has a sphere of open space around it, so it doesn’t evaluate any other points within that sphere. As the map expands, the algorithm discovers new possible sources of collision and rescales the spheres accordingly. But by making a few educated guesses right off the bat, the algorithm can plan an initial route very quickly. The researchers’ new system then uses Frazzoli and Karaman’s algorithm to refine the route.

In simulations of a robot trying to grasp an object with one robotic hand, the standard algorithm took almost four times as long as the new one to calculate an initial path and ended up with a route through space that was almost three times as long. In addition to testing the algorithm in simulations, the researchers also tested it on a PR2 robot at CSAIL (see figure 1).

Sachin Chitta, a research scientist at Willow Garage, the company that makes the PR2, says that he and his colleagues are already evaluating the MIT researchers’ new algorithm with plans to add it to the suite of motion-planning software that comes with the robot. At the moment, Chitta says, the algorithm is “probably slower than we’d like.” But increasing a new algorithm’s speed, he explains, “is sometimes a matter of code optimization.”

“It’s already almost there,” Chitta says. “It definitely would be one of the options that people would look for.”

Article by Larry Hardesty. Reprinted with permission of MIT News.


About The Author

MIT News’s picture

MIT News

The MIT News is the Massachusetts Institute of Technology’s (MIT) central hub for news about MIT research, initiatives, and events. It reports MIT news directly and works with journalists around the world to help showcase the achievements of its students, faculty, and staff.