

Sensing Your Way Through Closed-Loop Manufacturing

Hexagon Manufacturing Intelligence 4 May, 2017

Agenda

- 1. What is Closed-Loop Manufacturing?
- 2. Importance of Sensing in Closed-loop Manufacturing
- 3. Implementing The Sensing Element

Speaker Information

Jonathan O'Hare Technology Expert Hexagon Manufacturing Intelligence

Shaun Wissner
Software Communications
Hexagon Manufacturing Intelligence

What is Closed-Loop Manufacturing?

What is Closed-Loop Manufacturing?

- Controlled repetitive manufacturing process
- The ideal manufacturing environment
 - Continuous
 - Maintenance free
- In reality human intervention is needed
 - Optimized with quality data
 - Needs to be implemented efficiently
 - Maintained through a digital thread

Traditional Closed-Loop Manufacturing Process

The Role of Sensing In Closed-Loop Manufacturing

- Necessary to provide quality data for feedback
- Needed to validate the first part before production
- Needed to close the loop for continuous process control
- Requirements
 - Accurate and transferrable data
 - Efficiently Implemented
 - Easily Maintained

Implementing Your Sensing environmental disturbances Input **Output ACTING THINKING Product** Mfg. Info Corrective (PMI) Design tool path Manuf. Predictive Statistical **Product** Reqmts System Analysis Calculations measurement results **SENSING** observed products Meas. Inspection Analysis System P sensor path environmental Inspection disturbances Inspection Simulation & Planning Validation Planner

Implementing The Sensing Element

A good process starts with a good plan...

- 1) Design requirements must be defined
- 2) Design requirements must be validated
- 3) Inspection plan must created
 - 1) Probe path
 - 2) Measurement calculations
 - 3) Report methods
- 4) Inspection plan then validated
 - CMM simulation and inspection plan testing
 - 2) Before you execute on machine / go live
- 5) Execute the inspection plan
- 6) Communicate data for plan maintenance

How We Can Make Implementation Easier?

Two aspects of this:

- 1) Workflow Efficiency
- 2) Technical Tools

New Software Environments for a Collaborative Workflow

Workflow Efficiency:

Plan **Execute** Report

Dobittiteuppgaamqaehine!

Technical Tools

Embedded GD&T

Planner Software for Design Professionals

Planner Software for Design Professionals: Automatic Planning

Planner tools for PC-DMIS

Change Management

GLOBAL PC-DMIS USERS' FORUM AT HxGN LIVE 2017

USER GROUP SESSIONS:

- Reporting a tips and tricks session to help users unleash the full power of PC-DMIS reporting
- Motion getting the best from clear planes, clear cubes, auto path, path from feature and other PC-DMIS motion tools

TECHNICAL SESSIONS:

- PC-DMIS Application Improvements and Measurement Routine Optimization
 - Shop Floor PC-DMIS Optimization Workshop
- Live User Echo Session user ideas that influence PC-DMIS development
 - PC-DMIS Power Users

METROLOGY LOUNGE WALK-IN SESSIONS:

- Drop-in clinic
- Speak one-on-one with a PC-DMIS expert
 - Ask us anything!

