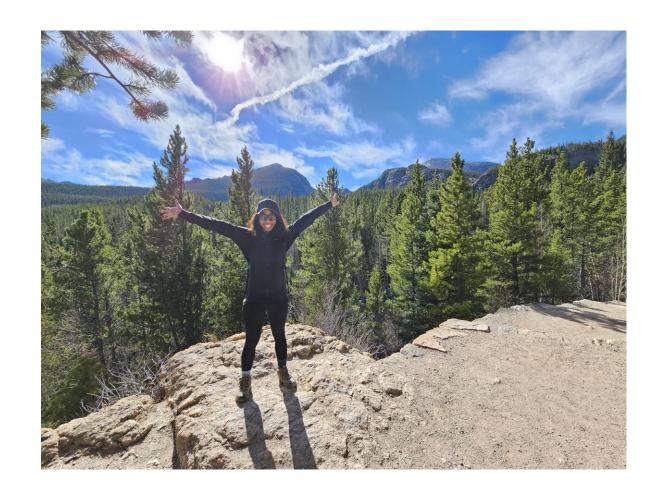


Risk-Based Decision Making in QMS: Choosing the Right Tool for the Job

Stephanie Ojeda

Director of Product Management, Life Sciences & Manufacturing AssurX
April 1, 2025

Agenda


- Why Risk-Based Decision Making Matters in QMS
- Overview of Risk Management Tools
 - Failure Modes and Effects Analysis (FMEA)
 - Hazard Analysis & Critical Control Points (HACCP)
 - Bowtie Analysis
 - Risk Registers
 - Decision Trees
- Integrating Risk-Based Decision Making into QMS Workflows
- Case Studies: Effective Use of Risk Management Tools
- Q&A

Hello! I'm Stephanie!

- St. Louis University
 - B.S. in Chemistry
- 15+ years of Quality Management Experience
 - Biotech, Pharma, Medical Device, Food
 & Beverage, General Manufacturing
- ASQ Certified Quality Auditor
- ISO 13485 Lead Auditor
- Lean Six Sigma Green Belt
- Certified HACCP Manager

Poll Time!

What is the biggest challenge you face in risk management today?

- Lack of standardized processes or tools
- Difficulty getting cross-functional teams engaged
- Siloed or incomplete risk data
- Resistance to change from leadership or teams
- We're doing well, but always looking to improve
- Something else



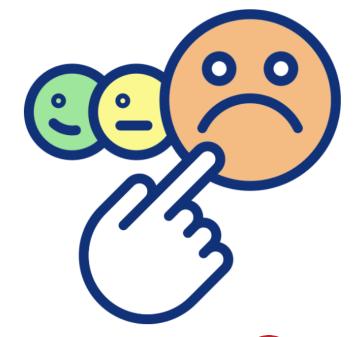
Why Risk-Based Decision Making Matters in QMS

Risk Management is the Foundation of Quality and Compliance

- Ensures consistent product quality and safety
- Reduces variability and improves process control
- Supports a proactive approach

Regulatory Frameworks Emphasize Risk-Based Thinking

- ISO 9001
- ISO 13485
- ISO 14971
- FDA QMSR


Why Risk-Based Decision Making Matters in QMS

The Impact of Poor Risk Management

- Product recalls companies failing to identify risks before launch
- Regulatory fines non-compliance due to inadequate risk controls
- Reputational damage loss of customer trust, market share, financial losses, etc.

Overview of Risk Management Tools

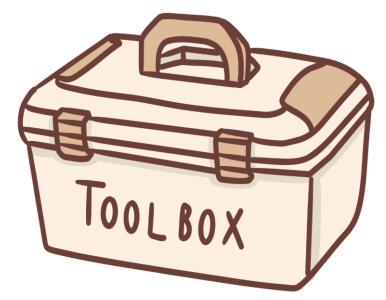
Failure Modes & Effects Analysis (FMEA)

Identifies potential failure modes, prioritizes risks, helps prevent failures before occurrence

Hazard Analysis & Critical Control Points (HACCP)

Systematic approach for identifying, evaluating, and controlling hazards

Risk Registers


Centralized system to track, assess, and monitor risks across an organization

Bowtie Analysis

A visual tool that maps out cause and effect relationships, showing how risks develop & how to prevent them

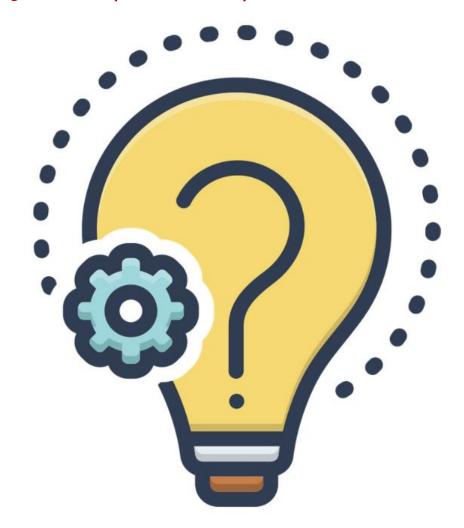
Decision Trees

Structured decision making tool that helps evaluate different risk scenarios and their outcomes

Failure Modes and Effects Analysis (FMEA)

What is FMEA?

- Used across industries to prevent failures before they happen
- A structured, proactive approach to identifying potential failure modes and their impact
- Assign a Risk Priority Number (RPN) to each failure mode
- Helps teams prioritize risks based on severity, occurrence, and detectability



Failure Modes and Effects Analysis (FMEA)

Key Elements of FMEA

- Failure Modes Ways a process, product, or system can fail
- Effects Consequences of each failure mode on quality, safety, or performance
- Causes The underlying reasons for failures
- Severity, Occurrence, and Detection Ratings
 Scoring system to prioritize risks
- Risk Priority Number (RPN) Calculation –
 Numeric value that determines which risks require action

Hazard Analysis & Critical Control Points (HACCP)

What is HACCP?

- Required for regulatory compliance in food, pharma, and other industries
- A proactive, science-based system to identify and control biological, chemical, and physical hazards
- Used to prevent contamination in industries where safety is critical

Hazard Analysis & Critical Control Points (HACCP)

The 7 Principles of HACCP:

- Conduct a Hazard Analysis: Identify potential risks in a process
- Determine Critical Control Points (CCPs): pinpoint steps where controls should be applied
- Establish Critical Limits: Define acceptable thresholds for each control point
- Implement Monitoring Procedures: Track CCPs to ensure they stay within critical limits
- Define Corrective Actions: Outline steps to take when a deviation occurs
- Verify System Effectiveness: Conduct audits, testing, and validation to confirm
- Maintain Detailed Records: Keep documentation to prove compliance and track trends

Risk Registers

What is a Risk Register?

- A **centralized tool** for tracking and managing risks across an organization
- Helps teams document, assess, and mitigate risks systematically
- Provides a structured approach to risk management in quality systems

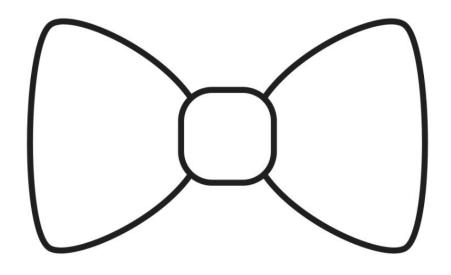
Key Components of a Risk Register:


- Risk Description What is the identified risk?
- Likelihood & Impact Assessment How probable is it, and what is the potential effect?
- Risk Owner Who is responsible for managing and mitigating the risk?
- Mitigation Actions Steps to reduce or eliminate the risk

Risk Registers

Best Practices for Using Risk Registers:

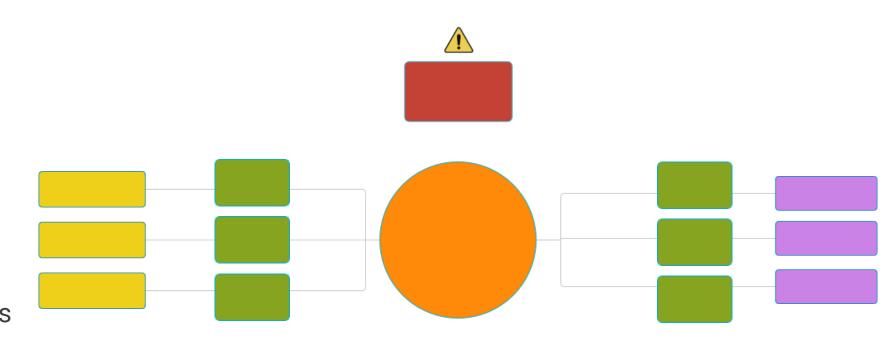
- Keep it updated regularly
- Assign clear ownership
- Integrate with other QMS processes



Bowtie Analysis

What is a Bowtie Analysis?

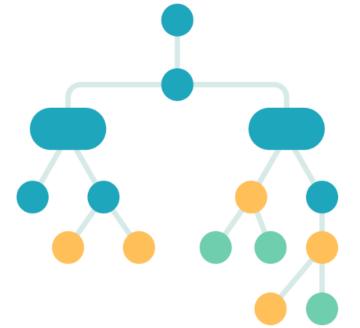
- A visual tool to map out risk causes and consequences
- Provides a clear cause and effect structure, making it easy to understand risk pathways


Why Use Bowtie Analysis?

- Clarifies risk relationships shows connections between causes, events, and consequences
- Identifies control measures makes it easier to develop prevention and mitigation strategies
- Enhances risk communication easy to interpret for stakeholders across different departments

Bowtie Analysis – Key Elements

- Hazard → Source of potential harm
- Top Event → Point where control is lost
- Threats → Events leading to the top event
- Consequences → Events occurring due to the top event
- Preventive Controls → Actions to reduce likelihood of occurrence
- Mitigative Controls → Actions to minimize the severity (if the event does occur)

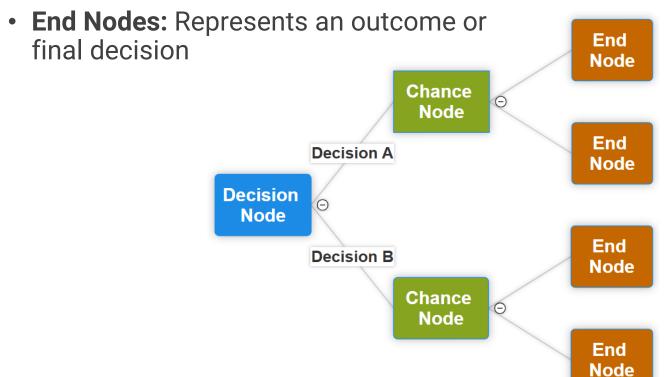


Decision Trees

What are Decision Trees?

- A structured, step-by-step decision making tool
- Provides a visual framework for analyzing choices
- Helps assess multiple risk factors and potential outcomes

Why Use Decision Trees in Risk Management?


- Supports complex decision making via evaluation of different risk pathways
- Quantifies and compares risk levels for different options
- Reduces bias by ensuring structured evaluation rather than gut feelings

Decision Trees

Key Parts of a Decision Tree:

- Decision Nodes: Used to represent choices
- Chance Nodes: Used to show probability or uncertainty

Best Practices for Decision Trees:

- Clearly define the decision you need to make
- Use real data whenever possible
- Revisit your decision tree over time

Selecting the Right Tool for the Job

Key Considerations When Selecting a Risk Management Tool

- Complexity of the process or product
- Regulatory requirements
- Data availability

Integrating Risk-Based Decision Making into QMS Workflows

Where Risk Management Fits in QMS:

- Design & Development: Risk-based design controls to prevent product failures
- Supplier Management: Selecting suppliers based on risk criteria
- Change Management: Assessing risk before implementing process changes
- CAPA (Corrective & Preventive Actions): Ensuring corrective actions are proportionate to risk level

Integrating Risk-Based Decision Making into QMS Workflows

Best Practices for Integration:

- Establish clear criteria for selecting risk tools
- Train teams on risk assessment methodologies to improve adoption
- Use automation and QMS software to streamline workflows and centralize risk data

Poll Time!

Which Risk Management tool would have the biggest impact in your organization?

- FMEA
- Bowtie Analysis
- Risk Registers
- Decision Trees
- Something else (add it to the chat!)
- Not sure yet

Case Study – Using FMEA to Improve Product Quality

Company Background & Challenge:

Industry: Medical Device

Problem: High failure rates reported in post-

market surveillance

Root Cause: Design flaws leading to component

failures and regulatory compliance risks

How they used FMEA:

Applied FMEA during Design & Development to proactively address potential failures

Step-by-Step Process: Applying FMEA

Step 1: Identify Potential Failure Modes

- Assembled a cross-functional team
- Mapped out all possible failure points within the product design
- Key failures identified:
 - Battery casing too weak → risk of overheating and leakage
 - Sensor calibration issues → inconsistent readings
 - Material defects → increased wear & tear

Step 2: Assess the Risks (RPN Calculation)

- Assigned Risk Priority Numbers (RPNs) using:
 - Severity: How bad is the failure?
 - Occurrence: How often does it happen?
 - Detection: How easy is it to catch before reaching customers?
- Ranked failure modes by highest RPN scores

Failure Mode	Severity	Occurrence	Detection	RPN
Battery casing too weak	9	4	8	288
Sensor calibration issues	8	2	5	80
Material defects	7	5	2	70

Case Study - Bowtie Analysis in Manufacturing

Company Background & Challenge:

Industry: Manufacturing

Problem: Frequent equipment breakdowns causing unplanned downtime and missed orders

Root Cause: Poor preventive maintenance and

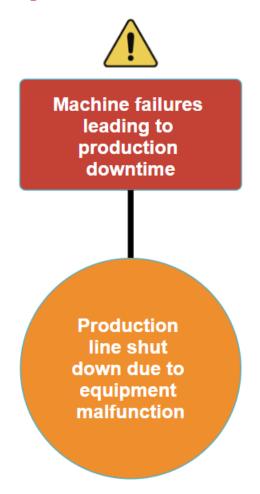
inconsistent operator training

How they used Bowtie Analysis:

Mapped risks to visualize causes, consequences, and control measures

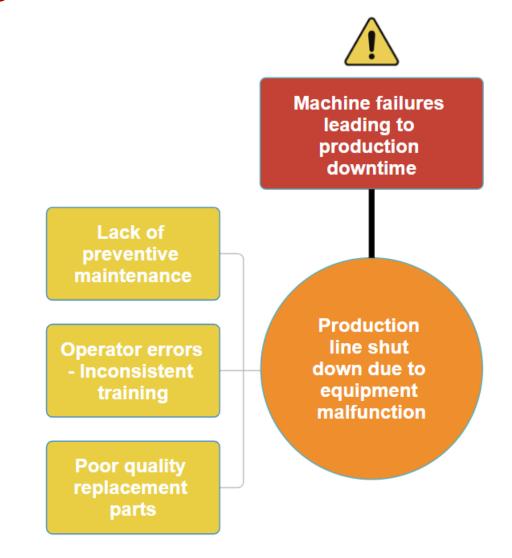
Step 1: Identify the Hazard

 Defined the main hazard: Machine failures leading to production downtime

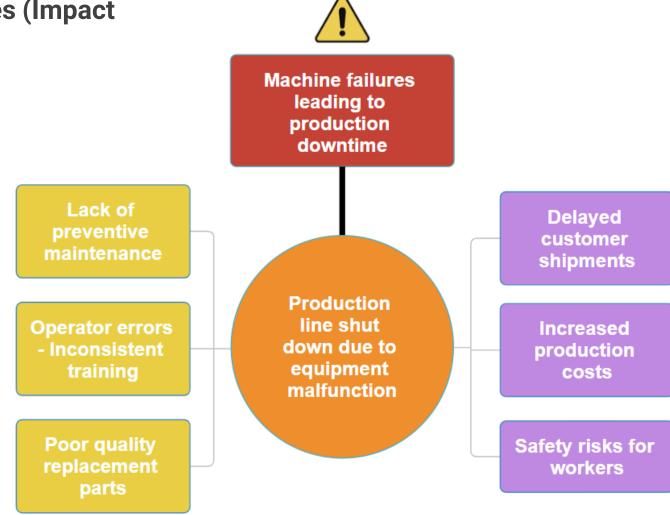


Machine failures leading to production downtime

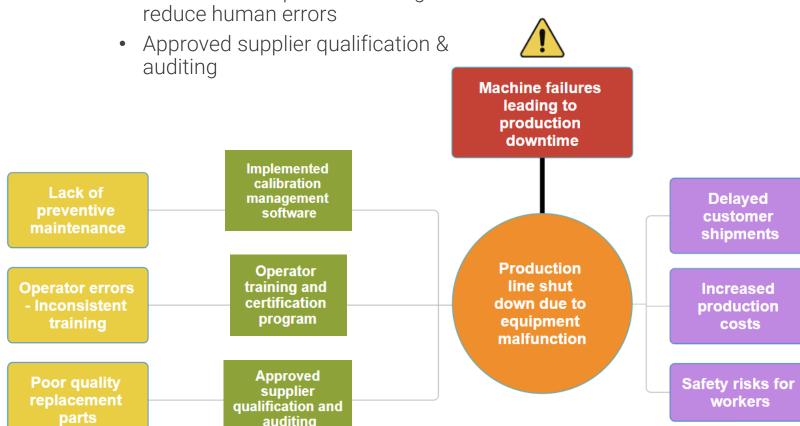
Step 2: Define the Top Event


 Critical failure event: Production line shut down due to equipment malfunction

Step 3: Identify Threats (Causes of the Top Event)

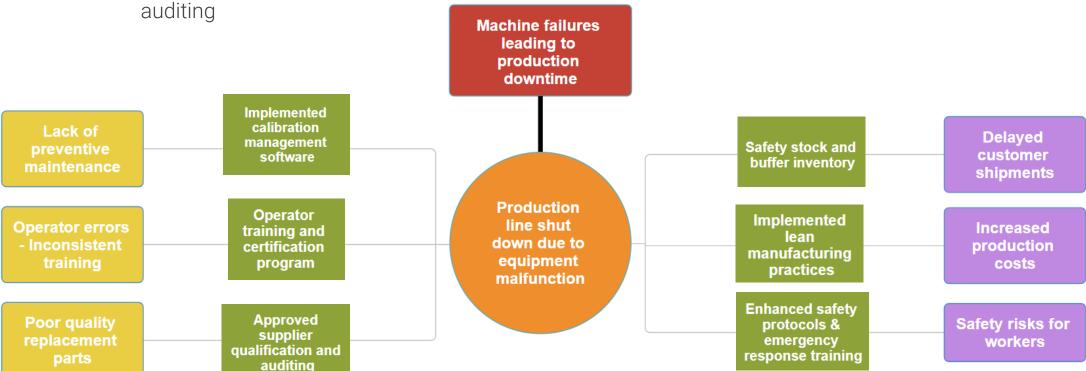

- Lack of preventive maintenance
- Operator errors due to inconsistent training
- Poor quality replacement parts

Step 4: Identify Consequences (Impact of the Breakdown)


- Delayed customer shipments
- Increased production costs
- Safety risks for workers

Step 5: Implement Preventive & Mitigative Controls/Barriers

- Preventive Controls/Barriers:
 - Implemented calibration management software
 - Standardized operator training to reduce human errors



Step 5: Implement Preventive & Mitigative Controls/Barriers

- Preventive Controls/Barriers:
 - Implemented calibration management software
 - Standardized operator training to reduce human errors
 - Approved supplier qualification & auditing

- Mitigative Controls/Barriers:
 - Initiated a safety stock & inventory program
 - Optimized resource allocation & lean manufacturing
 - Enhanced safety protocols and ERT

Case Study - Risk Registers in Supplier Management

Company Background & Challenge:

Industry: Pharmaceutical

Problem: Frequent supplier non-conformances,

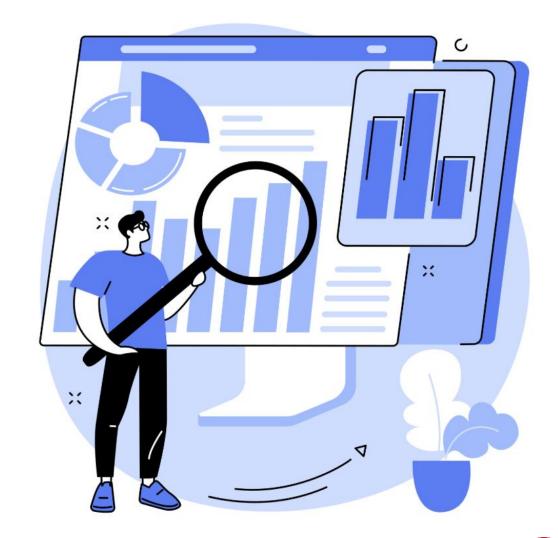
leading to regulatory compliance risks

Root Cause: Lack of visibility into supplier risk

levels & inconsistent risk tracking

How they used Risk Registers:

- Implemented a Risk Register to track, assess, and mitigate supplier risks
- Categorized risks by likelihood, impact, and mitigation plans



Step-by-Step Process: Creating Risk Registers

Step 1: Identify Supplier Risks

- Reviewed historical supplier performance data
- Conducted on-site audits and document reviews
- Risks identified:
 - Material quality inconsistencies
 - Late deliveries affecting production schedules
 - Regulatory non-compliance (missing certifications, poor documentation)

Step-by-Step Process: Creating Risk Registers

Step 2: Document Risks in a Risk Register

- Created a Risk Register Table:
 - Risk Description
 - Likelihood (Low, Medium, High)
 - Impact (Low, Medium, High)
 - Risk Owner
 - Mitigation Actions
 - Review Frequency

Risk Description	Likelihood	Impact	Owner	
Inconsistencies in material quality	Medium	Low	Supply Chain Manager	
Late deliveries affecting production schedules	High	High	Procurement Lead	
Regulatory non-compliance	Low	High	Quality Director	

Step-by-Step Process: Creating Risk Registers

Step 3: Implement Mitigation Actions

- Be proactive, not just reactive
- Address the root cause
- Make actions measurable and specific
- Assign clear ownership & accountability

Risk Description	Likelihood	Impact	Owner	Mitigation Actions
Inconsistencies in material quality	Medium	Low	Supply Chain Manager	 Establish strict supplier quality agreements Conduct routine raw material testing
Late deliveries affecting production schedules	High	High	Procurement Lead	 Develop backup supplier relationships Implement inventory buffer stock
Regulatory non- compliance	Low	High	Quality Director	 Perform regular internal audits Maintain comprehensive documentation and training

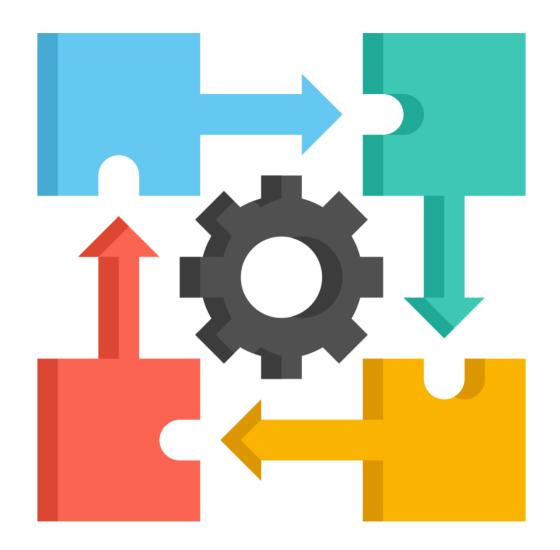
Key Takeaways

Risk-based decision making enhances compliance, efficiency, and product quality

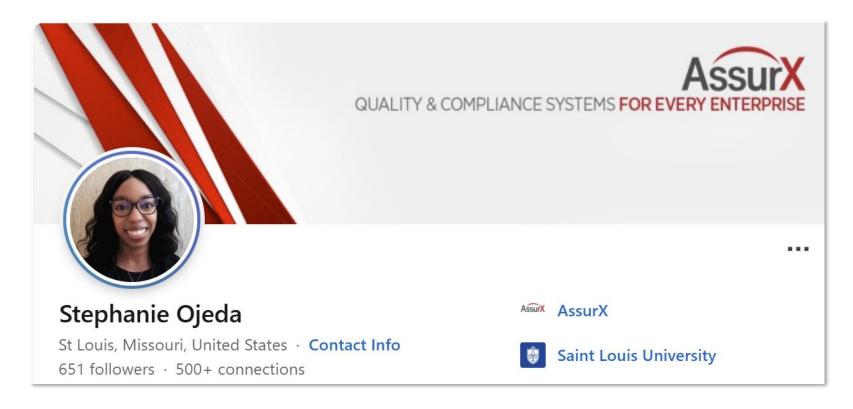
- Proactive risk assessment prevents costly issues before they occur
- Ensures **regulatory compliance** and reduces audit findings
- Leads to faster, more confident decision making across teams

Choosing the right risk tool depends on the scenario and industry needs

- **FMEA**: Best for product design and process risks
- Bowtie Analysis: Great for visualizing complex cause and effect relationships
- Risk Registers: Ideal for tracking and managing ongoing risks
- Decision Trees: Helps with structured, data-driven risk-based decisions



Key Takeaways


Integration with your QMS is essential for long-term success!

- Risk tools should be embedded in existing workflows (CAPA, Supplier Management)
- Cross-functional collaboration makes risk management a shared responsibility
- Automation ensures consistency and real-time visibility into risk assessments

Let's Connect!

Visit us to learn more: www.AssurX.com

Stay in touch: sojeda@assurx.com

Connect with me on LinkedIn!

Questions & Answers

