Quality Digest Webinar

Five Costly Mistakes Applying SPC
(and how to avoid them)

Presenters

Steve Daum
Director of Development
PQ Systems

Matt Savage
SPC Product Manager
PQ Systems

Dirk Dusharme
Editor in Chief
Quality Digest

Guest Moderator

Steve Daum
Matt Savage
Dirk Dusharme
#1 Capability before stability

- Check before you test
- Think SBC instead of SPC
 - Stability Before Capability
- Compare Cpk to Ppk
Capability before stability

Cp 2.3

Cpk 1.2
Basic Statistics
- Mean: 151.409

Capability Statistics
- C_p: 2.349
- C_{pk}: 1.205

Specifications
- Upper Spec: 155
- Target Spec: 148
- Lower Spec: 141
Basic Statistics
- Mean: 151.409
- Sigma of the individuals: 2.391
- Dpm (i): 66,595

Subgroup Statistics
- Estimated Sigma: 0.993

Performance Statistics
- Pp: 0.976
- Ppk: 0.501

Capability Statistics
- Cp: 2.349
- Cpk: 1.205

Specifications
- Upper Spec: 155
- Target Spec: 148
- Lower Spec: 141

Footnotes
- (i) = Uses Sigma of the individuals
Ideal Capability Summary

<table>
<thead>
<tr>
<th>Overall</th>
<th>Sigma(i)</th>
<th>1.047</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>Ppk</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>Cp</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Cpm</td>
<td>2.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Within</th>
<th>Sigma(e)</th>
<th>1.644</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cp</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>Cpk</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>Upm</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Sigma Limits

+3 Sigma(i)	151.657
+2 Sigma(i)	142.440
+1 Sigma(i)	133.110
-1 Sigma(i)	143.091
-2 Sigma(i)	152.348
-3 Sigma(i)	161.607

Specifications

Upper Spec	144
Target Spec	144
Lower Spec	141
#1 Capability before stability

To avoid Mistake #1:

- Don’t start with Cpk
- Review control charts first
- Compare Cpk to Ppk
#2 Misuse of control limits

• Relying on Excel
 – Wrong standard deviation (STDEV.P, STDEV, STDEV.S)
 – Wrong formula
X-bar
Set 1: UCL = 108.170, CL = 100.257, LCL = 92.340 (from: 1 to: 40)
#2 Misuse of control limits

- Relying on Excel
 - Wrong standard deviation (STDEV.P, STDEV, STDEV.S)
 - Wrong formula
- Never computing limits
- Never re-computing limits
#2 Misuse of control limits

- Relying on Excel
 - Wrong standard deviation (STDEV.P, STDEV, STDEV.S)
 - Wrong formula
- Never computing limits
- Never re-computing limits
- Waiting for enough data
- Confusing specification limits with control limits
To avoid Mistake #2

- Follow standards
- Revise limits when needed
- More is better, less will work
- Specification limits ≠ Control limits
#3 Not assessing the measurement system
Not assessing the measurement system
Measurement Unit Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability - Equipment Variation (EV)</td>
<td>0.2018</td>
<td>17.61</td>
</tr>
<tr>
<td>Reproducibility - Appraiser Variation (AV)</td>
<td>0.2298</td>
<td>20.05</td>
</tr>
<tr>
<td>Repeatability & Reproducibility (R&R)</td>
<td>0.3058</td>
<td>26.68</td>
</tr>
<tr>
<td>Part Variation (PV)</td>
<td>1.1044</td>
<td>96.37</td>
</tr>
<tr>
<td>Total Variation (TV)</td>
<td>1.1460</td>
<td></td>
</tr>
</tbody>
</table>
Not assessing the measurement system.
Not assessing the measurement system
Possible Woops!
#3 Not assessing the measurement system
To avoid Mistake #3

• Assess the measurement system
• Re-assess the measurement system
• When looking at a control chart - ask the question “are we assessing this measurement system?”
#4 Not managing the measurement system

Auditor asks what device took this measurement?
Gages

<table>
<thead>
<tr>
<th>Gage number</th>
<th>Gage type</th>
<th>Calib due date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP-823</td>
<td>Depth</td>
<td>2/23/2016</td>
<td>Storage</td>
</tr>
<tr>
<td>DEP-826</td>
<td>Depth</td>
<td>3/17/2016</td>
<td>Storage</td>
</tr>
<tr>
<td>DEP-832</td>
<td>Depth</td>
<td>4/21/2016</td>
<td>Storage</td>
</tr>
<tr>
<td>MIC-1001</td>
<td>Micrometer</td>
<td>8/4/2015</td>
<td>Past Due Calibration</td>
</tr>
<tr>
<td>MIC-1002</td>
<td>Micrometer</td>
<td>1/13/2016</td>
<td>In use</td>
</tr>
<tr>
<td>MIC-1003</td>
<td>Micrometer</td>
<td>1/30/2016</td>
<td>In use</td>
</tr>
<tr>
<td>MIC-1004</td>
<td>Micrometer</td>
<td>2/10/2016</td>
<td>Storage</td>
</tr>
<tr>
<td>RING-101</td>
<td>Ring</td>
<td>3/17/2016</td>
<td>Storage</td>
</tr>
<tr>
<td>RING-106</td>
<td>Ring</td>
<td>3/18/2016</td>
<td>Storage</td>
</tr>
</tbody>
</table>
To avoid Mistake #4

• Use software tools – to manage measurement devices systematically

• Implement feedback from audits
#5 Wasting time

TIME IS MONEY
#5 Wasting time
To avoid Mistake #5

• Use software tools
• Focus on the vital few
• Adapt Continuous Improvement
• *Statistical Process Control: SPC* (second edition), Automotive Industry Action Group, 2005

• PQ Systems – Quality Advisor
 www.pqsystems.com/qualityadvisor/
Thank you!

Questions?

Matt Savage – matt@pqsystems.com
Steve Daum – steved@pqsystems.com

Request the white paper
Five Costly Mistakes Applying SPC (and how to avoid them)
www.pqsystems.com/ApplyingSPC

Get a free trial of SQCpack
www.pqsystems.com