Brenda Boughton’s default image

By Brenda Boughton

Electronic records--theircreation, modification, maintenance, retrieval, and archiving--can create ongoing challenges for all organizations. For industries regulated by the U.S. Food and Drug Administration (FDA), such as pharmaceutical companies, medical device manufacturers, food processing plants, and biotech companies, the FDA’s Code of Federal Regulations Title 21 Part 11 applies to the specifications, use, and control of electronic records and electronic signatures.

The requirements of FDA 21 CFR Part 11 for electronic records are based on good practices, organization, and, most of all, common sense to ensure the efficient and secure handling of these records. In general, these requirements state that:

• All information is complete, and all records can be tracked to their originator and corresponding records.

• Appropriate securities are in place to ensure that tampering that would alter the record from its original intent does not take place.

• Only the appropriate parties can access the records, and only those so identified can create, modify, or review those records.

Thomas Hill, Ph.D.; Robert Eames; and Sachin Lahoti’s default image

By Thomas Hill, Ph.D.; Robert Eames; and Sachin Lahoti

Data mining methods have many origins, including drawing on insights into learning as it naturally occurs in humans (cognitive science), and advances in computer science and algorithm design on how to best detect patterns in unstructured data. Although traditional statistical methods for analyzing data, based on statistical theories and models, are now widely accepted throughout various industries, data mining methods have only been widely embraced in business for a decade or two. However, their effectiveness for root cause analysis, and for modeling, optimizing and improving complex processes, are making data mining increasingly popular--and even necessary--in many real-world discrete manufacturing, batch manufacturing, and continuous-process applications.

There is no single, generally agreed-upon definition of data mining. As a practical matter, whenever data describing a process are available, in manufacturing for example, then any systematic review of those data to identify useful patterns, correlations, trends, and so forth, could be called “data mining.” Put simply, data mining uncovers nuggets of information from a sometimes vast repository of data describing the process of interest.

Terri D. Lind’s picture

By Terri D. Lind

Energy generation is a multifaceted industry comprising dozens of major discrete technologies and thousands of companies. For reasons that are at once political, economic, and environmental, the energy industry occupies a central place in modern human society, and it will for the foreseeable future.

Alternative energy resources, such as photovoltaic modules and wind turbines, represent a particularly fast-growing segment of the industry. This article will look at this sector from the perspective of quality assurance and safety testing, two extremely important concerns for producers, as well as consumers, of alternative energy.

Mark Ames’s picture

By Mark Ames

The last few years have provided ample evidence that control of food safety is critical. Recent media reports have clearly documented supply chain shortcomings that have threatened consumers’ health and safety. These ongoing problems and the need for consumer safety cry out for additional tools to dramatically reduce or eliminate risks.

Milestones in U.S. Food and Drug Law History

 

1883
Dr. Harvey W. Wiley becomes chief chemist for the U.S. Department of Agriculture. Campaigning for a federal law, Dr. Wiley is called the “Crusading Chemist” and “Father of the Pure Food and Drug Act.”

 

1906
The original Pure Food and Drug Act is passed by Congress on June 30 and signed by President Theodore Roosevelt. The Meat Inspection Act is passed the same day.

 

William A. Stimson, Ph.D.’s default image

By William A. Stimson, Ph.D.


One of the most important objectives of an internal quality audit is measuring the effectiveness of an organization's quality management system. For this to happen, executive management must first meet its overriding responsibility of establishing and maintaining a system regarding quality policy, goals, resources, processes and effective performance--including monitoring and measuring the system's effectiveness and efficiency.

ISO 9001:2000 delineates this responsibility into three distinct areas: 4.1 General requirements, 4.2 Documentation requirements and 4.3 Quality management principles. If an organization's executive management isn't active in these three areas, then they won't be addressed and the quality system will be ineffective. Let's look at them one at a time, first in terms of their meaning and then as auditable characteristics.

Rich Burnham’s default image

By Rich Burnham

During the 1920s, a British statistician named Ronald Fisher put the finishing touches on a method for making breakthrough discoveries. Some 70 years later, Fisher's method, now known as design of experiments, has become a powerful software tool for engineers and researchers.

But why did it take engineers so long to begin using DOE for innovative problem solving? After all, they were ignoring a technique that would have produced successes similar to the following modern-day examples:

• John Deere Engine Works in Waterloo, Iowa, uses DOE software to improve the adhesion of its highly identifiable green paint onto aluminum. In the process, the company has discovered how to eliminate an expensive chromate-conversion procedure. Savings: $500,000 annually.

• Eastman Kodak in Rochester, New York, learns via DOE software that it needs only to retool an existing machine instead of making a huge capital purchase for a new one. The solution means improved, light-sealing film-pack clips used by professional photographers. Savings: Setup time drops from eight hours to 20 minutes; scrap reduces by a factor of 10, repeatability increases to 100 percent and $200,000 is not spent on a new machine.

William H. Denney, Ph.D.’s default image

By William H. Denney, Ph.D.

“We are going to win, and the industrial West is going to lose: There’s nothing much you can do about it because the reasons for your failure are within yourselves.”

--Konosuke Matsushita  

They work tirelessly to change our world irreversibly. If they succeed at what they’re doing and aren’t challenged, our way of life as we know it will end. While we whine about our bosses, our organizations, and our government; while we do the minimum that our jobs require; while we flip-flop through the mall and watch Oprah they’re planning, learning, and executing. When we’re tucked away in our beds, tossing and turning in restless sleep, they’re even busier. They don’t seem to tire; their passion is relentless. To them, weekends and holidays are inconsequential in their desire to have what we have.

We’re at war, but we seem oblivious to it. Our children’s future, our families, even our liberties are at risk, but for now, apathy is our primary defense. Secure in our ignorance of what’s happening far away, we think that we’re safe. But we’re not.

Charles Wells’s default image

By Charles Wells

Most in the electronic manufacturing services industry are acutely aware of the growing problem of counterfeit and substandard electronic components within the supply chain, as well as the headaches that they cause.

Although industry and governments are working diligently in addressing counterfeit abatement, you may already have one of the most useful tools in combating phony parts in place right on your production floor.

Chris Eckert’s picture

By Chris Eckert

Manufacturers’ efforts to do more with less have resulted in purchasing departments sourcing cheaper products and parts, often from overseas. Such cost-cutting certainly makes purchasing look good to management. But the effect on quality professionals may be just the opposite: product or part defects, malfunctions or undesirable side effects, not to mention the challenge of producing high-quality end-products within narrow timelines and budgets. Many sleepless nights are a frequent outcome.

Because cost cutting and global sourcing are here to stay, how can quality professionals combat these monumental challenges? Root cause analysis (RCA), when fully utilized, can eliminate defects in your operations as well as defects that you inherit from suppliers, ultimately helping to maintain a satisfied and engaged customer base.

Craig Cochran’s picture

By Craig Cochran

So you have a customer complaint. It’s not just any complaint, but a huge one from your biggest customer. The problem affects millions of dollars in business and threatens the survival of your company. Are you going to take action? Of course! You put together a team of top players and attack it head-on.

Team members investigate the problem and perform a detailed 5-Why analysis. They start with the problem statement and ask, “Why did that happen?” repeatedly, drilling down deeper with each iteration:

Problem: There were seven data errors in reports issued to our largest customer in the last month

Why? Because lab reports are getting in the wrong project folders.

Why? Because the project numbers are written illegibly on the folders.

Why? Because the customer service representatives are rushed when preparing folders.

Why? Because there are only two representatives taking calls for all divisions.