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Disclaimer; does not constitute engineering advice or detailed predictive capability. It is for 

educational and illustrative applications only, to demonstrate and understand the effects of 

countermeasures such as social distancing, vaccinations, barriers, face masks, and so on against 

diseases such as COVID-19 and seasonal flu. This material accompanies an Excel spreadsheet in 

which the user can try different values for a disease's basic reproduction number (R0), recovery 

rate, and vaccinated fraction of a population (if a vaccination is available) to: 

 Illustrate the curve everybody is trying to flatten 

 Show how diligent compliance with recommended countermeasures such as social 

distancing can "break the curve," i.e. suppress its first derivative to zero right out of the 

starting gate, to teach the importance of compliance with the countermeasures in question 

 Show how widespread vaccination (available for the seasonal flu) can have the same 

effect, thus encouraging people to get the annual vaccine 

Susceptible, Infected, Recovered (SIR) Model 

The Susceptible, Infected, Recovered (SIR) model1 predicts the course of an epidemic as 

follows. Everybody in a population of N falls into one of the following categories: 

 Susceptible (S): people who have no resistance to the disease 

 Infected (I): people who have the disease and are contagious to others 

 Recovered (R): people who have recovered from the disease and are no longer 

susceptible or contagious, or who have been vaccinated against it and are not able to 

become contagious. 

 S+I+R = N at all times. Alternatively, the fractions S/N + I/N + R/N must add to 1 or 

100%. 

 

The rates of change for these populations are as follows: 

Depletion of Susceptible 

population due to infection 
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where  (beta) is the transmission rate in people per infected 

person per unit time. 

Increase in Recovered 

population 

𝑑𝑅

𝑑𝑡
= −𝛾𝐼 

where  (gamma) is the recovery rate in infected people per 

day. It is the reciprocal of the period during which an 

infected person remains contagious regardless of whether he 

or she exhibits symptoms. 

Rate of change in the Infected 

population (equals the rate of 

depletion of the Susceptible 
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population minus the rate of 

increase in the Recovered 

population) 

Also, =R0 where R0 is the basic reproduction number, or 

average number of susceptible people to whom an infected 

person will transmit the disease while he or she is 

contagious. 

 

R0 for common diseases2 

 Ebola:  1.51 to 2.53 

 Seasonal flu:  2 to 3 

 Measles: 12 to 18 

 Polio: 5 to 7 (hence the terrifying nature of this disease prior to the Salk vaccine) 

 Smallpox: 5 to 7. This disease was similarly terrifying prior to Edward Jenner's vaccine. 

 COVID-19: 1.4 to 4.08 (2.6 seems to be the current best guess.) 

As an example, suppose R0 = 3 which means that, on average, an infected person will infect three 

susceptible people while he or she is contagious for 15 days. (The contagious period for seasonal 

flu is considerably less, and that for COVID-19 seems to be around 14 days including the 

asymptomatic period.) Then: 
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That is, the transmission rate is 0.2 people per infected person per day. We can then divide each 

of the differential equations by N (the total population) to express the SIR model into something 

very similar to a chemical kinetics problem in which the reaction rates are proportional to rate 

constants times concentrations of reactants, except in this case the concentrations are given in 

fractions of the total population rather than gram-moles per liter or pound-moles per gallon. 
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where i = I/N is the infected fraction of the population, s = S/N is the susceptible fraction, and 

r = R/N is the recovered and/or vaccinated fraction 
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Also, =R0 which means 



𝑑𝑖

𝑑𝑡
= 𝛾𝑖(𝑅0𝑠 − 1) 

 

which is zero (i is maximized) when 

𝒔 =
𝟏

𝑹𝟎
 

 

which is the top of the "curve" we are trying to flatten. If for example R0=3 then the top of the 

curve will be reached when only 1/3 of the population is still susceptible, whether due to 

vaccination or having actually had the disease. We can use this relationship to check whether 

the numerical method shown below is working correctly. 

 

In addition, when R0<1 (due, for example, to countermeasures like social distancing and 

deployment of improvised face masks which offer partial protection for activities like grocery 

shopping), di/dt is negative even when s=1 which means there is never a curve to flatten. 

 

Numerical Integration 

 

The differential equations shown above cannot be solved directly because they are functions of 

one another; that is, di/dt is a function of not only i but also s, and ds/dt is a function of i. They 

can however be handled by the Runge-Kutta method.3 When a reaction rate is given by 

𝑟(𝑥) =
𝑑𝑥

𝑑𝑡
,   𝑡ℎ𝑒𝑛 𝑥𝑗+1 = 𝑥𝑗 +
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6
(𝑘0 + 2𝑘1 + 2𝑘2 + 𝑘3) 

where, for a time increment t, 

𝑘0 = Δ𝑡 × 𝑟(𝑥𝑗) 

𝑘1 = Δ𝑡 × 𝑟 (𝑥𝑗 +
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2
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𝑘2 = Δ𝑡 × 𝑟 (𝑥𝑗 +
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2
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𝑘3 = Δ𝑡 × 𝑟(𝑥𝑗 + 𝑘2) 

 

In this case, if we let the current populations be s, i, and r (no subscript j), 

Susceptible Infected 
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Recovered 

𝑟0 = Δ𝑡𝛾𝑖 
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And then 

𝑠𝑛𝑒𝑥𝑡 = 𝑠 +
1
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𝑟𝑛𝑒𝑥𝑡 = 𝑟 +
1

6
(𝑟0 + 2𝑟1 + 2𝑟2 + 𝑟3) 

Recall that 

(1) s+i+r = 1 (100%) 

(2) i is maximized when s=1/R0 

In addition, at any given time t, 

𝑟(𝑡) = ∫
𝑑𝑖

𝑑𝑡

𝑡

0

 

which means the attack rate, or total number of people who become ill, is the total area under the 

Infected curve: 

𝐴𝑡𝑡𝑎𝑐𝑘 𝑟𝑎𝑡𝑒 = ∫
𝑑𝑖

𝑑𝑡

∞

0

 



 

To use the spreadsheet 

 

Enter the initial infected fraction (this will not matter too much) and the initial vaccinated 

fraction, if any. As an example, we can model the seasonal flu with a given basic reproduction 

number R0 (also user-defined, along with the recovery period) if, for example, 50% of the people 

get a 100% effective vaccine or conceivably 50% get a 50% effective vaccine (in which case, use 

25% for the fraction of immune people although, in practice, all are likely to have varying 

degrees of immunity). The resulting figures can be used to advocate for flu vaccination and to 

(for example) encourage employers and insurers to cover the cost. 

The increment in days is the t in the Runge-Kutta equations. A one-day increment seems 

adequate to get good results. 

The spreadsheet will calculate the fractions s, i, and r for each time increment and also report the 

attack rate (total percent infected) which is the last result for r and also the area under the curve 

for the infected fraction, minus the initiated vaccinated fraction if any. Note however that the 

user must ensure that r has ceased to change significantly in the last row, or else the integration 

has not been performed completely. (Enough rows have been provided for foreseeable practical 

purposes although more may be needed for extremely low R0 values.) 



Example: R0=2, No Vaccination 

 

 

The maximum (15.84% infected, 2 rows of the spreadsheet) is reached when the susceptible 

fractions are 50.73% and 49.66% whose average is 50.2% which compares favorably with the 

exact value of 1/R0 = 50.00%. 

In addition, the attack rate (or area under the infected curve is close to 80%. This shows how 

dangerous a disease with R0=2 can be if allowed to run out of control. 



 

Example: R0=2, 40% vaccinated 

 

The maximum is reached at only 1.72% and only about 22% of the people (area under the 

infected curve) rather than 80% get the disease. 



 

Example: No vaccination is available but countermeasures (such as social distancing) 

reduce R0 to 0.7. 

This one can be used to underscore the importance of following the CDC's and Surgeon 

General's instructions with regard to social distancing. If all the countermeasures reduce R0 to 

0.7 (for example) about 3.2% of the population will eventually get the illness. Note also that S/N 

(the fraction of the susceptible population at the maximum) is 1.43 which is of course impossible 

so there is no maximum, as shown in the graph. 
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