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Interest in Six Sigma continues to remain very high as or-
ganizations use its tools to improve their processes, products and 
services. One of the major tools utilized in the Six Sigma protocol 
is design of experiments (DOE). In nearly all applications of DOE 
we follow either the Western (i.e., traditional) or the Taguchi 
approach, with the former predominating.
 In either case the objective of a designed experiment is to 
identify those inputs (factors) that influence an output (response) 
of a process or design. The effect of these factors can be ranked 
and analyzed to determine the level of statistical significance. 
The determination of statistical significance can be determined 
graphically by performing a normal probability plot (NOPP) or 
more precisely by performing an analysis of variance (ANOVA). 
The latter analysis is more complex and generally involves the 
use of statistical software.
 One issue with these traditional DOE approaches is that 
they usually must be performed offline because some of the 
experimental runs can produce process results beyond process 
specification limits.

 There are other methods by which we can accomplish the 
same end as with a traditional designed experiment. These intro-
duce small changes that shouldn’t adversely affect process results 
while zeroing in on optimal process parameters. 
 One such method is the concept of evolutionary operations 
(EVOP), which is discussed in the book Evolutionary Operations 
(George E. P. Box and Norman R. Draper, John Wiley and Sons, 
1969). In an EVOP approach one augments the current operating 
conditions by small increments and migrates to a position or 
coordinate yielding an improvement. For a two-factor experiment 
the EVOP approach would start with four positions around the 
initial starting point.
 Another method, Simplex Optimization, was introduced in 
Sequential Simplex Optimization (F.H. Walters, L. R. Parker, Jr., 
S.L. Morgan and S.N. Deming, CRC Press, 1991). In their discus-
sion, however, there is no mention of statistical significance.
 In this article I will discuss the concept of Simplex Optimiza-
tion combined with the application of hypothesis testing as an 
alternative to traditional DOE with ANOVA. Little or no knowl-
edge of statistics is required for the methodology.
 In the following hypothetical case study we’ll examine two fac-
tors. (In reality, any number of factors might be examined.) Three 
unique conditions or experiments (i.e., runs) are required to examine 
two factors using the simplex approach. In a traditional full-factorial 
experiment, four runs would be required. The figure at the upper left-
hand side of the following page gives the number of runs as a function 
of the number of factors for both simplex and full-factorial DOE.

Simplex terminology
 Simplex—A geometric figure defined by a number of coordi-
nates equal to one more than the number of factors being exam-
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■ Simplex Optimization, or simplex, is an alternative approach to traditional 

design of experiments (DOE) that offers the quality practitioner the ability 
to explore, through many experiments, the response space of their process. 
Process changes are made in small incremental amounts as the process is 
“tweaked” for enhanced performance.

■ Simplex also offers a method to verify results using a minimal amount of 
computation. Complex analysis are not required and don’t require the use of 
statistical software. Simplex is user-friendly in its approach.

■ Simplex can employ graphical methods to track the progress of the experi-
ments, especially with two or three experimental factors.



coordinates describing a unique experi-
mental condition. As you can see, this is a 
two-dimensional simplex, having only an 
x and y dimension. A three-dimensional 
simplex (i.e., one with three factors) would 
have four vertexes. The resulting geometric 
figure, called a tetrahedron, would have 
four corners. It isn’t necessary for the fig-
ures to be symmetric, but for three factors 
they must have some length, width and 
depth. (You might have more than three 
factors, but this will yield a simplex with 
four or more dimensions. These figures are 
referred to as “hypertetrahedra” and can’t 
be visually conceptualized.)
 We’ll run the experiment at each of the 
three vertexes twice (for two replicates). 
The data will be recorded on the simplex 1 
worksheet (see the figure at left), including 
the individual responses, the average 
and the standard deviation. The average 
responses will be ranked as “best” (b), 
“next best” (nb) and “worst” (w).
 We’ll now perform a hypothesis test 
to confirm that there’s a statistically 
significant difference between b and w. 
If there’s no difference, we must expand  
the degree of perturbation. No advice is 
given with respect to how much one should 
vary a given parameter, but remember that 
we want to improve by small increments.
Ho: Ubest = Uworst (no difference)
Ha: Ubest > Uworst (“best” is a real improve-
ment over “worst”)

 The test statistic will be the calculated 
t-score:
n = The number of observations for each 
experimental run (two in this case).
Sp

2 = The pooled variance

ture during curing 
and duration of 
clamping time. The 
latter two factors 
will be examined.
 The current set-
tings are 95° Fahr-
enheit for the temperature and 10 seconds 
for the clamping time. The number of 
factors is two; therefore, we’ll need to 
define three sets of conditions for our 
initial experiment. These can be defined 
as coordinates. We’ll perturb the normal 
temperature by ±5 degrees and the time by 
±5 seconds. You could use any combina-
tion of temperature and time to arrive at 
the three coordinates. The temperature will 
be designated as factor A and the time as 
factor B (see the figure above right).
 This two-factor simplex has three 
vertexes that form a triangle. The corner 
of each vertex locates a unique set of 

Plot of Simplex 1

Ti
m

e,
 B

Temperature, A

(95, 15)

(100, 5)

R

(90, 5)

20

10

0
80 90 100 110

P

b

nbw
ined. An n-factor study will yield an n+1 
number of vertexes.
 Vertex—A corner of a simplex and one 
of the points that  defines it. A two-factor 
study will have three corners for each sim-
plex.
 Face or hyperface—The part of a sim-
plex that remains after removing one of the 
vertexes.
 Centroid—The geometric center of a 
set of vertex coordinates. We’ll be exam-
ining the centroid of a hyperface, referred 
to as .

Hypothetical case study
 A manufacturing process requires that 
a lap-joint be made. There are several fac-
tors that could be examined to maximize 
the bond strength. These include the 
amount of adhesive, brand of adhesive, 
concentration of the adhesive, substrate 
smoothness, clamping pressure, tempera-

Simplex 1 Worksheet
 Factor Factor   

Coordinates 95 15 55, 54 54.5 0.71 b
 100 5 52, 50 51.0 1.41 nb
 90 5 48, 49.5 48.8 1.06 w

A B
Responses 

(bond 
strength)

Average
Standard 
deviation Rank

Simplex 1-2 Worksheet
 Factor Factor    

Coordinates 95 15 55, 54 54.5 0.71 b

 100 5 52, 50 51.0 1.41 nb

 195 20    

 97.5 10    

w 90 5 48, 49.5 48.8 1.06 w

 7.5 5    

 105 15 63, 65.5 64.3 1.77 R

A B
Responses 

(bond 
strength)

Average
Standard 
deviation Rank

Factors and Runs: Simplex Vs. Full-Factorial Experiments

 

  N=F+1 N=2F

 1 2 2

 2 3 4

 3 4 8

 4 5 16

 5 6 32

Number of  
factors (F)

Simplex 
experiments (N)

Full-factorial 
experiments (N)
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 Decision rule:
If tcalc > tcritical, then reject Ho and 
accept Ha.
tcritical = t.05, 2 = 2.92

For us, 6.32 > 2.92.

 Therefore, the difference is significant 
at 95-percent confidence.
 We now determine the coordinates 
for the next evaluation. Referring to the 

simplex 1-2 worksheet at 
the bottom of the preceding 
page, we’ll calculate the 
centroid for the line formed 
by coordinates b and nb 
hyperface, .
 Centroid calculations:
n Fa c t o r  A  ave r a g e 
coordinates for b and nb  
= (95 + 100)/2 = 97.5
n Fa c t o r  B  ave r a g e 
coordinates for b and nb  
= (15 + 5)/2 = 10
n The centroid, , for the 
hyperface is (97.5, 10)

 We extend a line from w through  by 
a magnitude equal to the distance between 
w and :
n For each factor, the new coordinates are 
defined by 
n For factor A: 97.5 + (97.5 – 90) = 105
n For factor B: 10 + (10 – 5) = 15

 This new vertex is called the reflected, or 
R, vertex because it’s a reflection of the line 
from w to . The coordinates are (105, 15). 
We now run an experiment using the values 
represented by this vertex and obtain two 
responses. Again, we record the individual 
responses, the average and standard deviation, 
and label this vertex as R. Our responses are 
63 and 65.5. The plot for simplexes 1 and 2 
can be seen in the figure at the left.
 After completing the initial simplex 
1-2, the following rules apply for creating 
the next simplexes:
n Never transfer the current row labeled 
w to the next worksheet. The w row can be 
considered the “waste” basket. 
n The current row nb is always desig-
nated as w on the next worksheet

tcalc = 

 For the unique case in which two 
observations are made for each experi-
mental condition, this equation can be 
simplified.

tcalc = 

Plot of Simplexes 1 and 2
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 We now develop the simplex 2-3. 
 Referring to simplex worksheet 1-2 
rows b, nb, w and R:
n Don’t use the w row from worksheet 
1-2 on this sheet.
n Transfer the nb row from worksheet 
1-2 to worksheet 2-3, relabeling it w.
n Rank the remaining two rows and 
relabel them b and nb according to their 
response values

 The reflected coordinates have been 
calculated but we must test for statistical 
significance between the b and w vertexes 
before applying the R vertex.
 Test for a statistically significance 
between the “best” and “worst” responses.
Ho: Ubest = Uworst
Ha: Ubest > Uworst

tcalc =  = 8.32

tcritical = 2.92

8.32 > 2.92; therefore, we reject Ho and 
accept Ha.
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Simplex 2-3 Worksheet
  Factor Factor    

Coordinates 105 15 63, 65.5 64.3 1.77 b

   95 15 55, 54 54.5 0.71 nb

   200 30    

   100 15    

w   100 5 52, 50 51 1.41 w

   0 10    

   100 25 66, 67.7 66.9 1.20 R

A B
Responses 

(bond 
strength)

Average
Standard 
deviation Rank

Simplex 3-4 Worksheet
  Factor Factor

    

Coordinates 100 25 66, 67.7 66.9 1.20 b

  105 15 63, 65.5 64.3 1.77 nb

  205 40    

  102.5 20    

w  95 15 55, 54 54.5 0.71 w

  7.5 5    

  110 25 70, 70.9 70.5 0.64 R

A B
Responses

(bond 
strength) 

Average
Standard 
deviation Rank

Σ

Σ



Plot of Simplexes 1, 2, 3 and 4
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 We can now apply the reflected vertex for the simplex 2-3 
worksheet. The plot for simplexes 1, 2 and 3 can be seen in the 
figure above.
 Referring to the simplex 2-3 worksheet, we can discard row w, 
relabel row nb as w, perform the experiment indicated by the R coor-
dinates and rank the remaining two vertexes. Label this worksheet 
as simplex 3-4. The simplex 2-3 worksheet and the simplex 3-4 
worksheet can be found on the preceding page.
 Determine if the difference between b and w is statistically 
significant. If they are, we can plot the vertex R and complete our 
plot of simplex 4: 
Ho: Ubest = Uworst
Ha: Ubest > Uworst

tcalc = 

tcritical = 2.92

12.6 > 2.92; therefore, we reject Ho and accept Ha.

Plot of Simplexes 1,2 and 3
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 We can now apply the reflected vertex for simplex 4. The plot 
for simplexes 1, 2, 3 and 4 can be seen in the lower figure on the 
preceding page.
 Complete this process for simplexes 4-5, 5-6 and 6-7. Assume 
that all the b to w vertexes are statistically significant. The entire 
plot for all seven simplexes and a contour for the response space 
can be seen in the figure above. 
 The limit of possible improvement efforts are reached when 
simplexes simply revolve around a point. In our hypothetical case, 
if we created two more simplexes we’d see that they rotate around 
point 110, 25.
 It’s possible to overshoot the coordinates that would pro-
vide an improvement. This can happen when the size of the 
original simplex is large, thus giving a lower resolution of the 
response space. There are techniques for utilizing variable 
size reflections that allow contracted and expanded reflec-
tions. These methods are discussed in Sequential Simplex 
Optimization.
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Plot of Seven Simplexes With Contour  
for Response Space
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